5,615 research outputs found

    Majorana spin-flip transitions in a magnetic trap

    Get PDF
    Atoms confined in a magnetic trap can escape by making spin-flip Majorana transitions due to a breakdown of the adiabatic approximation. Several papers have studied this process for atoms with spin F=1/2F = 1/2 or F=1F= 1. The present paper calculates the escape rate for atoms with spin F>1F > 1. This problem has new features because the perturbation ΔT\Delta T which allows atoms to escape satisfies a selection rule ΔFz=0,±1,±2\Delta F_z = 0, \pm 1, \pm 2 and multi-step processes contribute in leading order. When the adiabatic approximation is satisfied the leading order terms can be summed to yield a simple expression for the escape rate.Comment: 16page

    Soft triaxial roto-vibrational motion in the vicinity of γ=π/6\gamma=\pi/6

    Full text link
    A solution of the Bohr collective hamiltonian for the β−\beta-soft, γ−\gamma-soft triaxial rotor with γ∼π/6\gamma \sim \pi/6 is presented making use of a harmonic potential in γ\gamma and Coulomb-like and Kratzer-like potentials in β\beta. It is shown that, while the γ−\gamma-angular part in the present case gives rise to a straightforward extension of the rigid triaxial rotor energy in which an additive harmonic term appears, the inclusion of the β\beta part results instead in a non-trivial expression for the spectrum. The negative anharmonicities of the energy levels with respect to a simple rigid model are in qualitative agreement with general trends in the experimental data.Comment: 4 pages, 2 figures, accepted in Phys.Rev.

    The Jacobi identity for Dirac-like brackets

    Get PDF
    For redundant second-class constraints the Dirac brackets cannot be defined and new brackets must be introduced. We prove here that the Jacobi identity for the new brackets must hold on the surface of the second-class constraints. In order to illustrate our proof we work out explicitly the cases of a fractional spin particle in 2+1 dimensions and the original Brink-Schwarz massless superparticle in D=10 dimensions in a Lorentz covariant constraints separation.Comment: 14 pages, Latex. Final version to be published in Int. J. Mod. Phys.

    Exact renormalization in quantum spin chains

    Full text link
    We introduce a real-space exact renormalization group method to find exactly solvable quantum spin chains and their ground states. This method allows us to provide a complete list for exact solutions within SU(2) symmetric quantum spin chains with S≤4S\leq 4 and nearest-neighbor interactions, as well as examples with S=5. We obtain two classes of solutions: One of them converges to the fixed points of renormalization group and the ground states are matrix product states. Another one does not have renormalization fixed points and the ground states are partially ferromagnetic states.Comment: 8 pages, 5 figures, references added, published versio

    Local Invariants and Pairwise Entanglement in Symmetric Multi-qubit System

    Full text link
    Pairwise entanglement properties of a symmetric multi-qubit system are analyzed through a complete set of two-qubit local invariants. Collective features of entanglement, such as spin squeezing, are expressed in terms of invariants and a classifcation scheme for pairwise entanglement is proposed. The invariant criteria given here are shown to be related to the recently proposed (Phys. Rev. Lett. 95, 120502 (2005)) generalized spin squeezing inequalities for pairwise entanglement in symmetric multi-qubit states.Comment: 9 pages, 2 figures, REVTEX, Replaced with a published versio

    Analytical approximation for the sphere-sphere Coulomb potential

    Get PDF
    A simple analytical expression, which closely approximates the Coulomb potential between two uniformly charged spheres, is presented. This expression can be used in the optical potential semiclassical analyses which require that the interaction be analytic on and near the real r-axis.Comment: 4 pages including 3 figures and 1 tabl

    Anatomy of neck configuration in fission decay

    Full text link
    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes 236U^{236}U and 232Th^{232}Th in the valley of stability and exotic neutron rich isotopes 250U^{250}U, 256U^{256}U, 260U^{260}U, 240Th^{240}Th, 250Th^{250}Th, 256Th^{256}Th likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for 260^{260}U and 256^{256}Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay like multi-fragmentation fission may also be inferred from this study.Comment: 16 pages, 5 figures (Accepted

    Destroying superfluidity by rotating a Fermi gas at unitarity

    Full text link
    We study the effect of the rotation on a harmonically trapped Fermi gas at zero temperature under the assumption that vortices are not formed. We show that at unitarity the rotation produces a phase separation between a non rotating superfluid (S) core and a rigidly rotating normal (N) gas. The interface between the two phases is characterized by a density discontinuity nN/nS=0.85n_{\rm N}/n_{\rm S}= 0.85, independent of the angular velocity. The depletion of the superfluid and the angular momentum of the rotating configuration are calculated as a function of the angular velocity. The conditions of stability are also discussed and the critical angular velocity for the onset of a spontaneous quadrupole deformation of the interface is evaluated.Comment: 5 pages, 4 figures; comments added; 2 figures changed according to new results; inset Fig.2 corrected; accepted for publication in Phys. Rev. Let
    • …
    corecore