760 research outputs found

    Phase Control of Trapped Ion Quantum Gates

    Full text link
    There are several known schemes for entangling trapped ion quantum bits for large-scale quantum computation. Most are based on an interaction between the ions and external optical fields, coupling internal qubit states of trapped-ions to their Coulomb-coupled motion. In this paper, we examine the sensitivity of these motional gate schemes to phase fluctuations introduced through noisy external control fields, and suggest techniques to suppress the resulting phase decoherence.Comment: 21 pages 12 figure

    Detecting unambiguously non-Abelian geometric phases with trapped ions

    Full text link
    We propose for the first time an experimentally feasible scheme to disclose the noncommutative effects induced by a light-induced non-Abelian gauge structure with trapped ions. Under an appropriate configuration, a true non-Abelian gauge potential naturally arises in connection with the geometric phase associated with two degenerated dark states in a four-state atomic system interacting with three pulsed laser fields. We show that the population in atomic state at the end of a composed path formed by two closed loops C1C_1 and C2C_2 in the parameter space can be significantly different from the composed counter-ordered path. This population difference is directly induced by the noncommutative feature of non-Abelian geometric phases and can be detected unambiguously with current technology.Comment: 6 page

    Entanglement of Trapped-Ion Clock States

    Full text link
    A M{\o}lmer-S{\o}rensen entangling gate is realized for pairs of trapped 111^{111}Cd+^+ ions using magnetic-field insensitive "clock" states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the complete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion-qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum computing.Comment: 6 pages, 5 figure

    Magneto-optical Trapping of Cadmium

    Full text link
    We report the laser-cooling and confinement of Cd atoms in a magneto-optical trap, and characterize the loading process from the background Cd vapor. The trapping laser drives the 1S0-1P1 transition at 229 nm in this two-electron atom and also photoionizes atoms directly from the 1P1 state. This photoionization overwhelms the other loss mechanisms and allows a direct measurement of the photoionization cross section, which we measure to be 2(1)x10^(-16)cm^(2) from the 1P1 state. When combined with nearby laser-cooled and trapped Cd^(+) ions, this apparatus could facilitate studies in ultracold interactions between atoms and ions.Comment: 8 pages, 11 figure

    The bloodstream differentiation - division of Trypanosoma brucei studied using mitochondrial markers

    Get PDF
    In the bloodstream of its mammalian host, the African trypanosome Trypanosoma brucei undergoes a life cycle stage differentiation from a long, slender form to a short, stumpy form. This involves three known major events: exit from a proliferative cell cycle, morphological change and mitochondrial biogenesis. Previously, models have been proposed accounting for these events (Matthews & Gull 1994a). Refinement of, and discrimination between, these models has been hindered by a lack of stage-regulated antigens useful as markers at the single-cell level. We have now evaluated a variety of cytological markers and applied them to investigate the coordination of phenotypic differentiation and cell cycle arrest. Our studies have focused on the differential expression of the mitochondrial enzyme dihydrolipoamide dehydrogenase relative to the differentiation-division of bloodstream trypanosomes. The results implicate a temporal order of events: commitment, division, phenotypic differentiation

    Efficient Photoionization-Loading of Trapped Cadmium Ions with Ultrafast Pulses

    Get PDF
    Atomic cadmium ions are loaded into radiofrequency ion traps by photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The photoionization is driven through an intermediate atomic resonance with a frequency-quadrupled mode-locked Ti:Sapphire laser that produces pulses of either 100 fsec or 1 psec duration at a central wavelength of 229 nm. The large bandwidth of the pulses photoionizes all velocity classes of the Cd vapor, resulting in high loading efficiencies compared to previous ion trap loading techniques. Measured loading rates are compared with a simple theoretical model, and we conclude that this technique can potentially ionize every atom traversing the laser beam within the trapping volume. This may allow the operation of ion traps with lower levels of background pressures and less trap electrode surface contamination. The technique and laser system reported here should be applicable to loading most laser-cooled ion species.Comment: 11 pages, 12 figure

    Precautionary Regulation in Europe and the United States: A Quantitative Comparison

    Get PDF
    Much attention has been addressed to the question of whether Europe or the United States adopts a more precautionary stance to the regulation of potential environmental, health, and safety risks. Some commentators suggest that Europe is more risk-averse and precautionary, whereas the US is seen as more risk-taking and optimistic about the prospects for new technology. Others suggest that the US is more precautionary because its regulatory process is more legalistic and adversarial, while Europe is more lax and corporatist in its regulations. The flip-flop hypothesis claims that the US was more precautionary than Europe in the 1970s and early 1980s, and that Europe has become more precautionary since then. We examine the levels and trends in regulation of environmental, health, and safety risks since 1970. Unlike previous research, which has studied only a small set of prominent cases selected non-randomly, we develop a comprehensive list of almost 3,000 risks and code the relative stringency of regulation in Europe and the US for each of 100 risks randomly selected from that list for each year from 1970 through 2004. Our results suggest that: (a) averaging over risks, there is no significant difference in relative precaution over the period, (b) weakly consistent with the flip-flop hypothesis, there is some evidence of a modest shift toward greater relative precaution of European regulation since about 1990, although (c) there is a diversity of trends across risks, of which the most common is no change in relative precaution (including cases where Europe and the US are equally precautionary and where Europe or the US has been consistently more precautionary). The overall finding is of a mixed and diverse pattern of relative transatlantic precaution over the period

    Quantum associative memory with improved distributed queries

    Full text link
    The paper proposes an improved quantum associative algorithm with distributed query based on model proposed by Ezhov et al. We introduce two modifications of the query that optimized data retrieval of correct multi-patterns simultaneously for any rate of the number of the recognition pattern on the total patterns. Simulation results are given.Comment: 16 pages, 10 figures, submitted to Int J Theor Phy

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.
    • …
    corecore