5,541 research outputs found

    Test aspects of the JPL Viterbi decoder

    Get PDF
    The generation of test vectors and design-for-test aspects of the Jet Propulsion Laboratory (JPL) Very Large Scale Integration (VLSI) Viterbi decoder chip is discussed. Each processor integrated circuit (IC) contains over 20,000 gates. To achieve a high degree of testability, a scan architecture is employed. The logic has been partitioned so that very few test vectors are required to test the entire chip. In addition, since several blocks of logic are replicated numerous times on this chip, test vectors need only be generated for each block, rather than for the entire circuit. These unique blocks of logic have been identified and test sets generated for them. The approach employed for testing was to use pseudo-exhaustive test vectors whenever feasible. That is, each cone of logid is tested exhaustively. Using this approach, no detailed logic design or fault model is required. All faults which modify the function of a block of combinational logic are detected, such as all irredundant single and multiple stuck-at faults

    Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems

    Full text link
    We construct a general measure for the degree of non-Markovian behavior in open quantum systems. This measure is based on the trace distance which quantifies the distinguishability of quantum states. It represents a functional of the dynamical map describing the time evolution of physical states, and can be interpreted in terms of the information flow between the open system and its environment. The measure takes on nonzero values whenever there is a flow of information from the environment back to the open system, which is the key feature of non-Markovian dynamics.Comment: 4 pages, 2 figures, published versio

    Witness for initial system-environment correlations in open system dynamics

    Full text link
    We study the evolution of a general open quantum system when the system and its environment are initially correlated. We show that the trace distance between two states of the open system can increase above its initial value, and derive tight upper bounds for the growth of the distinguishability of open system states. This represents a generalization of the contraction property of quantum dynamical maps. The obtained inequalities can be interpreted in terms of the exchange of information between the system and the environment, and lead to a witness for system-environment correlations which can be determined through measurements on the open system alone.Comment: 4 pages, 1 figur

    How large are present-day heat flux variations across the surface of Mars?

    Get PDF
    ©2016. American Geophysical UnionThe first in situ Martian heat flux measurement to be carried out by the InSight Discovery‐class mission will provide an important baseline to constrain the present‐day heat budget of the planet and, in turn, the thermochemical evolution of its interior. In this study, we estimate the magnitude of surface heat flux heterogeneities in order to assess how the heat flux at the InSight landing site relates to the average heat flux of Mars. To this end, we model the thermal evolution of Mars in a 3‐D spherical geometry and investigate the resulting surface spatial variations of heat flux at the present day. Our models assume a fixed crust with a variable thickness as inferred from gravity and topography data and with radiogenic heat sources as obtained from gamma ray measurements of the surface. We test several mantle parameters and show that the present‐day surface heat flux pattern is dominated by the imposed crustal structure. The largest surface heat flux peak‐to peak variations lie between 17.2 and 49.9 mW m−2, with the highest values being associated with the occurrence of prominent mantle plumes. However, strong spatial variations introduced by such plumes remain narrowly confined to a few geographical regions and are unlikely to bias the InSight heat flux measurement. We estimated that the average surface heat flux varies between 23.2 and 27.3 mW m−2, while at the InSight location it lies between 18.8 and 24.2 mW m−2. In most models, elastic lithosphere thickness values exceed 250 km at the north pole, while the south pole values lie well above 110 km

    Vanishing quantum discord is necessary and sufficient for completely positive maps

    Full text link
    Two long standing open problems in quantum theory are to characterize the class of initial system-bath states for which quantum dynamics is equivalent to (1) a map between the initial and final system states, and (2) a completely positive (CP) map. The CP map problem is especially important, due to the widespread use of such maps in quantum information processing and open quantum systems theory. Here we settle both these questions by showing that the answer to the first is "all", with the resulting map being Hermitian, and that the answer to the second is that CP maps arise exclusively from the class of separable states with vanishing quantum discord.Comment: 4 pages, no figures. v2: Accepted for publication in Phys. Rev. Let

    Phenomenological memory-kernel master equations and time-dependent Markovian processes

    Get PDF
    Do phenomenological master equations with memory kernel always describe a non-Markovian quantum dynamics characterized by reverse flow of information? Is the integration over the past states of the system an unmistakable signature of non-Markovianity? We show by a counterexample that this is not always the case. We consider two commonly used phenomenological integro-differential master equations describing the dynamics of a spin 1/2 in a thermal bath. By using a recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that as far as the equations retain their physical sense, the key feature of non-Markovian behavior does not appear in the considered memory kernel master equations. Namely, there is no reverse flow of information from the environment to the open system. Therefore, the assumption that the integration over a memory kernel always leads to a non-Markovian dynamics turns out to be vulnerable to phenomenological approximations. Instead, the considered phenomenological equations are able to describe time-dependent and uni-directional information flow from the system to the reservoir associated to time-dependent Markovian processes.Comment: 5 pages, no figure

    Intersexual conflict influences female reproductive success in a female-dispersing primate

    Get PDF
    In group-living mammals, individual efforts to maximize reproductive success result in conflicts and compromises between the sexes. Females utilize counterstrategies to minimize the costs of sexual coercion by males, but few studies have examined the effect of such behaviors on female reproductive success. Secondary dispersal by females is rare among group-living mammals, but in western gorillas, it is believed to be a mate choice strategy to minimize infanticide risk and infant mortality. Previous research suggested that females choose males that are good protectors. However, how much female reproductive success varies depending on male competitive ability and whether female secondary dispersal leads to reproductive costs or benefits has not been examined. We used data on 100 females and 229 infants in 36 breeding groups from a 20-year long-term study of wild western lowland gorillas to investigate whether male tenure duration and female transfer rate had an effect on interbirth interval, female birth rates, and offspring mortality. We found that offspring mortality was higher near the end of males’ tenures, even after excluding potential infanticide when those males died, suggesting that females suffer a reproductive cost by being with males nearing the end of their tenures. Females experience a delay in breeding when they dispersed, having a notable effect on birth rates of surviving offspring per female if females transfer multiple times in their lives. This study exemplifies that female counterstrategies to mitigate the effects of male-male competition and sexual coercion may not be sufficient to overcome the negative consequences of male behavior

    On the Contractivity of Hilbert-Schmidt distance under open system dynamics

    Full text link
    We show that the Hilbert-Schmidt distance, unlike the trace distance, between quantum states is generally not monotonic for open quantum systems subject to Lindblad semigroup dynamics. Sufficient conditions for contractivity of the Hilbert-Schmidt norm in terms of the dissipation generators are given. Although these conditions are not necessary, simulations suggest that non-contractivity is the typical case, i.e., that systems for which the Hilbert-Schmidt distance between quantum states is monotonically decreasing form only a small set of all possible dissipative systems for N>2, in contrast to the case N=2 where the Hilbert-Schmidt distance is always monotonically decreasing.Comment: Major revision. We would particularly like to thank D Perez-Garcia for constructive feedbac

    Entanglement in SO(3)-invariant bipartite quantum systems

    Full text link
    The structure of the state spaces of bipartite (N tensor N) quantum systems which are invariant under product representations of the group SO(3) of three-dimensional proper rotations is analyzed. The subsystems represent particles of arbitrary spin j which transform according to an irreducible representation of the rotation group. A positive map theta is introduced which describes the time reversal symmetry of the local states and which is unitarily equivalent to the transposition of matrices. It is shown that the partial time reversal transformation theta_2 = (I tensor theta) acting on the composite system can be expressed in terms of the invariant 6-j symbols introduced by Wigner into the quantum theory of angular momentum. This fact enables a complete geometrical construction of the manifold of states with positive partial transposition and of the sets of separable and entangled states of (4 tensor 4) systems. The separable states are shown to form a three-dimensional prism and a three-dimensional manifold of bound entangled states is identified. A positive maps is obtained which yields, together with the time reversal, a necessary and sufficient condition for the separability of states of (4 tensor 4) systems. The relations to the reduction criterion and to the recently proposed cross norm criterion for separability are discussed.Comment: 15 pages, 3 figure

    Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: a comparison between exact solutions and master equation approaches

    Full text link
    The reduced dynamics of two interacting qubits coupled to two independent bosonic baths is investigated. The one-excitation dynamics is derived and compared with that based on the resolution of appropriate non-Markovian master equations. The Nakajima-Zwanzig and the time-convolutionless projection operator techniques are exploited to provide a description of the non-Markovian features of the dynamics of the two-qubits system. The validity of such approximate methods and their range of validity in correspondence to different choices of the parameters describing the system are brought to light.Comment: 6 pages, 3 figures. Submitted to PR
    corecore