593 research outputs found
Coarsening Dynamics of a Nonconserved Field Advected by a Uniform Shear Flow
We consider the ordering kinetics of a nonconserved scalar field advected by
a uniform shear flow. Using the Ohta-Jasnow-Kawasaki approximation, modified to
allow for shear-induced anisotropy, we calculate the asymptotic time dependence
of the characteristic length scales, L_parallel and L_perp, that describe the
growth of order parallel and perpendicular to the mean domain orientation. In
space dimension d=3 we find, up to constants, L_parallel = gamma t^{3/2},
L_perp = t^{1/2}, where gamma is the shear rate, while for d = 2 we find
L_parallel = gamma^{1/2} t (ln t)^{1/4}, L_perp = gamma^{-1/2}(ln t)^{-1/4} .
Our predictions for d=2 can be tested by experiments on twisted nematic liquid
crystals.Comment: RevTex, 4 page
Dynamics and delocalisation transition for an interface driven by a uniform shear flow
We study the effect of a uniform shear flow on an interface separating the
two broken-symmetry ordered phases of a two-dimensional system with
nonconserved scalar order parameter. The interface, initially flat and
perpendicular to the flow, is distorted by the shear flow. We show that there
is a critical shear rate, \gamma_c, proportional to 1/L^2, (where L is the
system width perpendicular to the flow) below which the interface can sustain
the shear. In this regime the countermotion of the interface under its
curvature balances the shear flow, and the stretched interface stabilizes into
a time-independent shape whose form we determine analytically. For \gamma >
\gamma_c, the interface acquires a non-zero velocity, whose profile is shown to
reach a time-independent limit which we determine exactly. The analytical
results are checked by numerical integration of the equations of motion.Comment: 5 page
Corrections to Scaling in Phase-Ordering Kinetics
The leading correction to scaling associated with departures of the initial
condition from the scaling morphology is determined for some soluble models of
phase-ordering kinetics. The result for the pair correlation function has the
form C(r,t) = f_0(r/L) + L^{-\omega} f_1(r/L) + ..., where L is a
characteristic length scale extracted from the energy. The
correction-to-scaling exponent \omega has the value \omega=4 for the d=1
Glauber model, the n-vector model with n=\infty, and the approximate theory of
Ohta, Jasnow and Kawasaki. For the approximate Mazenko theory, however, \omega
has a non-trivial value: omega = 3.8836... for d=2, and \omega = 3.9030... for
d=3. The correction-to-scaling functions f_1(x) are also calculated.Comment: REVTEX, 7 pages, two figures, needs epsf.sty and multicol.st
Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results
We consider the pair correlation functions of both the order parameter field
and its square for phase ordering in the model with nonconserved order
parameter, in spatial dimension and spin dimension .
We calculate, in the scaling limit, the exact short-distance singularities of
these correlation functions and compare these predictions to numerical
simulations. Our results suggest that the scaling hypothesis does not hold for
the model. Figures (23) are available on request - email
[email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2
Phase Ordering Kinetics with External Fields and Biased Initial Conditions
The late-time phase-ordering kinetics of the O(n) model for a non-conserved
order parameter are considered for the case where the O(n) symmetry is broken
by the initial conditions or by an external field. An approximate theoretical
approach, based on a `gaussian closure' scheme, is developed, and results are
obtained for the time-dependence of the mean order parameter, the pair
correlation function, the autocorrelation function, and the density of
topological defects [e.g. domain walls (), or vortices ()]. The
results are in qualitative agreement with experiments on nematic films and
related numerical simulations on the two-dimensional XY model with biased
initial conditions.Comment: 35 pages, latex, no figure
Perturbative Corrections to the Ohta-Jasnow-Kawasaki Theory of Phase-Ordering Dynamics
A perturbation expansion is considered about the Ohta-Jasnow-Kawasaki theory
of phase-ordering dynamics; the non-linear terms neglected in the OJK
calculation are reinstated and treated as a perturbation to the linearised
equation. The first order correction term to the pair correlation function is
calculated in the large-d limit and found to be of order 1/(d^2).Comment: Revtex, 27 pages including 2 figures, submitted to Phys. Rev. E,
references adde
Growth Laws for Phase Ordering
We determine the characteristic length scale, , in phase ordering
kinetics for both scalar and vector fields, with either short- or long-range
interactions, and with or without conservation laws. We obtain
consistently by comparing the global rate of energy change to the energy
dissipation from the local evolution of the order parameter. We derive growth
laws for O(n) models, and our results can be applied to other systems with
similar defect structures.Comment: 12 pages, LaTeX, second tr
Phase Ordering Kinetics of One-Dimensional Non-Conserved Scalar Systems
We consider the phase-ordering kinetics of one-dimensional scalar systems.
For attractive long-range () interactions with ,
``Energy-Scaling'' arguments predict a growth-law of the average domain size for all . Numerical results for ,
, and demonstrate both scaling and the predicted growth laws. For
purely short-range interactions, an approach of Nagai and Kawasaki is
asymptotically exact. For this case, the equal-time correlations scale, but the
time-derivative correlations break scaling. The short-range solution also
applies to systems with long-range interactions when , and in that limit the amplitude of the growth law is exactly
calculated.Comment: 19 pages, RevTex 3.0, 8 FIGURES UPON REQUEST, 1549
Phase separation of the Potts model in que square lattice
When the two dimensional q-color Potts model in the square lattice is
quenched at zero temperature with Glauber dynamics, the energy decreases in
time following an Allen-Cahn power law, and the system converges to a phase
with energy higher than the ground state energy after an arbitrary large time
when q>4. At low but finite temperature, it cesses to obey the power-law regime
and orders after a very long time, which increases with q, and before which it
performs a domain growth process which tends to be slower as q increases. We
briefly present and comment numerical results on the ordering at nonzero
temperature.Comment: 3 pages, 1 figure, proceedings of the "International Workshop on
Complex sytems", June 2006 in Santander (Spain
The Expansion in Width for Domain Walls in Nematic Liquid Crystals in External Magnetic Field
The improved expansion in width is applied to curved domain walls in uniaxial
nematic liquid crystals in external magnetic field. In the present paper we
concentrate on the case of equal elastic constants. We obtain approximate form
of the director field up to second order in magnetic coherence length.Comment: 18 pages, Latex 2.09, no figure
- …