115 research outputs found

    CO2 adsorption on different organo-­‐modified SBA-­‐15 silicas: a multidisciplinary study on the effects of basic surface groups

    Get PDF
    Hybrid organic–inorganic SBA-15 silicas functionalized with increasing amounts of amino groups were studied in this work aiming to evaluate the effects of their physico-chemical properties on CO2 capture ability. Three different amino-silane species were used: 3-aminopropyltriethoxysilane (APTS), 3-(2-aminoethyl)- aminopropyltrimethoxysilane (EAPTS) and 3-[2-(2-aminoethyl)aminoethyl] aminopropyltrimethoxysilane (PAPTS). More specifically, samples were prepared by using two methods, following a post-synthesis grafting procedure and a one-pot preparation method. Experimental and computational techniques were used to study the structural and textural properties of the obtained samples and their surface species in relation to the adopted preparation method. For the most reactive samples, additional hints on the interactions of organosilane species with the silica surface were obtained by a combination of IR and SS-NMR spectroscopy, with particular emphasis on the effects of the silane chain length on the mobility of the organic species. Advanced complementary solid-state NMR techniques provided deeper information on the interactions of organosilane species with the silica surface. Finally, the amount of CO2 adsorbed was estimated by comparing the classical microcalorimetric analysis method with a new type of screening test, the Zero Length Column analysis, which is able to evaluate small amounts of samples in a very short time and the adsorption properties of the adsorbents. The reactivity of the amino-modified silica samples is deeply influenced by both the preparation route and by the type of organosilane used for the functionalization of the materials. In particular, samples prepared by the post-synthesis grafting procedure and containing higher amount of amino groups in the chain are more reactive, following the order PAPTS 4 EAPTS 4 APTS

    Performance of LoRa-WAN Sensors for Precision Livestock Tracking and Biosensing Applications

    Get PDF
    This study investigated the integration of Long Range Wide Area Network (LoRa WAN) communication technology and sensors for use as Internet of Things (IoT) platform for Precision Livestock-Farming (PLF) applications. The research was conducted at New Mexico State University’s Clayton Livestock Research Centre. The functionality of LoRA WAN communication technology and performance of LoRa WAN motion and GPS sensors were tested using static sensors that were placed either, a) outdoors and at incremental distances from the LoRa WAN gateway antenna (Field, n=6), or b) housed indoors and close to the same LoRa WAN gateway antenna (Indoor, n=5). Accelerometer data, reported as motion intensity index, and GPS location were acquired, transmitted and logged at 1 and 15 minute intervals, respectively. We evaluated the tracker\u27s GPS accuracy (GPSBias as the euclidean distance between the actual and projected tracker location) and variables associated with the tracker’s data transmission capabilities. The results indicate that field trackers had a greater accuracy for remote sensing of GPS locations compared to indoor trackers facing increasing communication interference to acquire satellite signals (GPSBias; 5.20 vs. 17.76 m; P\u3c 0.01). Overall, the trackers and deployments appeared to have a comparable GPS accuracy to other tracking devices and systems available in the market. The total data packets that were successfully transmitted were similar between the indoor and field trackers, but the number of data packets that were processed varied between the two deployments (P=0.02). Due to the static deployment of indoor and field trackers, activity data was almost non-existent for most devices. However, same trackers embedded on collars that were mounted on mature cattle showed clear diurnal patterns consistent with time budgets exerted by grazing cattle. The pilot testing of GPS and accelerometer sensors using LoRa WAN technology revealed reasonable sensor sensitivity and reliability for integration in PLF platforms

    Adsorption dynamics of hydrophobically modified polymers at an air-water interface

    Get PDF
    The adsorption dynamics of a series of hydrophobically modified polymers, PAAαCn, at the air-water interface is studied by measuring the dynamic surface tension. The PAAαCn are composed of a poly(acrylic acid) backbone grafted with a percentage α of C8 or C12 alkyl moieties, at pH conditions where the PAA backbone is not charged. The observed adsorption dynamics is very slow and follows a logarithmic behavior at long times indicating the building of an energy barrier which grows over time. After comparison of our experimental results to models from the literature, a new model which accounts for both the deformation of the incoming polymer coils as well as the deformation of the adsorbed pseudo-brush is described. This model enables to fit very well the experimental data. The two fitting parameters give expected values for the monomer size and for the area per adsorbed polymer chain.This article is uploaded in "arXiv.org" https://arxiv.org/abs/1706.0710

    Thirty Years with EoS/G<sup>E</sup> Models - What Have We Learned?

    Get PDF

    Orientational Effects and Random Mixing in 1-Alkanol + Alkanone Mixtures

    Get PDF
    1-Alkanol + alkanone systems have been investigated through the data analysis of molar excess functions, enthalpies, isobaric heat capacities, volumes and entropies, and using the Flory model and the formalism of the concentrationconcentration structure factor (SCC(0)). The enthalpy of the hydroxyl-carbonyl interactions has been evaluated. These interactions are stronger in mixtures with shorter alcohols (methanol-1-butanol) and 2-propanone or 2-butanone. However, effects related to the self-association of alcohols and to solvation between unlike molecules are of minor importance when compared with those which arise from dipolar interactions. Physical interactions are more relevant in mixtures with longer 1-alkanols. The studied systems are characterized by large structural effects. The variation of the molar excess enthalpy with the alcohol size along systems with a given ketone or with the alkanone size in solutions with a given alcohol are discussed in terms of the different contributions to this excess function. Mixtures with methanol show rather large orientational effects. The random mixing hypothesis is attained to a large extent for mixtures with 1-alkanols ≠ methanol and 2-alkanones. Steric effects and cyclization lead to stronger orientational effects in mixtures with 3-pentanone, 4-heptanone, or cyclohexanone. The increase of temperature weakens orientational effects. Results from SCC(0) calculations show that homocoordination is predominant and support conclusions obtained from the Flory model.Ministerio de Ciencia e Innovación, under Project FIS2010-1695
    corecore