1,706 research outputs found

    When does noise increase the quantum capacity?

    Get PDF
    Superactivation is the property that two channels with zero quantum capacity can be used together to yield positive capacity. Here we demonstrate that this effect exists for a wide class of inequivalent channels, none of which can simulate each other. We also consider the case where one of two zero capacity channels are applied, but the sender is ignorant of which one is applied. We find examples where the greater the entropy of mixing of the channels, the greater the lower bound for the capacity. Finally, we show that the effect of superactivation is rather generic by providing example of superactivation using the depolarizing channel.Comment: Corrected minor typo

    Solos do campo experimental da Embrapa Milho e Sorgo: suas características e classificação no novo Sistema Brasileiro.

    Get PDF
    bitstream/CNPS/11831/1/bpd05_2002_milho_sorgo.pd

    Schmidt balls around the identity

    Full text link
    Robustness measures as introduced by Vidal and Tarrach [PRA, 59, 141-155] quantify the extent to which entangled states remain entangled under mixing. Analogously, we introduce here the Schmidt robustness and the random Schmidt robustness. The latter notion is closely related to the construction of Schmidt balls around the identity. We analyse the situation for pure states and provide non-trivial upper and lower bounds. Upper bounds to the random Schmidt-2 robustness allow us to construct a particularly simple distillability criterion. We present two conjectures, the first one is related to the radius of inner balls around the identity in the convex set of Schmidt number n-states. We also conjecture a class of optimal Schmidt witnesses for pure states.Comment: 7 pages, 1 figur

    Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    Get PDF
    Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of al-lochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM). Autochthonous OM deriving from phytoplankton (similar to Chl a) was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM) and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250-450, S275-295, S350-450, S-R and SUVA(254)). Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA) and redundancy (RDA) analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250-450 and S-R) were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.Peer reviewe

    Quantifying Quantum Correlations in Fermionic Systems using Witness Operators

    Full text link
    We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entan- glement witness of a state with a class of problems known as semidefinite programs (SDPs), which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robust- ness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann con- currence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information Processin

    Faithful Squashed Entanglement

    Get PDF
    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, strictly positive if and only if the state is entangled. We derive the bound on squashed entanglement from a bound on quantum conditional mutual information, which is used to define squashed entanglement and corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured by the one-way LOCC norm, an operationally-motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and one-directional classical communication between the parties. A similar result for the Frobenius or Euclidean norm follows immediately. The result has two applications in complexity theory. The first is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in one-way LOCC or Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations thereby providing a new characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published version, claims have been weakened from the LOCC norm to the one-way LOCC nor

    Energy rehabilitation studies of a large group of historical buildings: a case study

    Get PDF
    In this paper, energy rehabilitation studies of a large group of historical buildings are assessed. A general methodology and some particular constraints are discussed. For a case study including 65 buildings in one of Lisbon’s historical centres, the methodology used, the proposed energy-efficient measures and the results in terms of heating energy savings and summer thermal convert are presented and discussed
    corecore