94 research outputs found

    The detection efficiency of on-axis short gamma ray burst optical afterglows triggered by aLIGO/Virgo

    Full text link
    Assuming neutron star (NS) or neutron star/stellar-mass black hole (BH) mergers as progenitors of the short gamma ray bursts, we derive and demonstrate a simple analysis tool for modelling the efficiency of recovering on-axis optical afterglows triggered by a candidate gravitational wave event detected by the Advanced LIGO and Virgo network. The coincident detection efficiency has been evaluated for different classes of operating telescopes using observations of gamma ray bursts. We show how the efficiency depends on the luminosity distribution of the optical afterglows, the telescope features, and the sky localisation of gravitational wave triggers. We estimate a plausible optical afterglow and gravitational wave coincidence rate of 1 yr−1^{-1} (0.1 yr−1^{-1}) for NS-NS (NS-BH), and how this rate is scaled down in detection efficiency by the time it takes to image the gravitational wave sky localization and the limiting magnitude of the telescopes. For NS-NS (NS-BH) we find maximum detection efficiencies of >80>80% when the total imaging time is less than 200 min (80 min) and the limiting magnitude fainter than 20 (21). We show that relatively small telescopes (m<18)(m<18) can achieve similar detection efficiencies to meter class facilities (m<20)(m<20) with similar fields of view, only if the less sensitive instruments can respond to the trigger and image the field within 10-15 min. The inclusion of LIGO India into the gravitational wave observatory network will significantly reduce imaging time for telescopes with limiting magnitudes ∼20\sim20 but with modest fields of view. An optimal coincidence search requires a global network of sensitive and fast response wide field instruments that could effectively image relatively large gravitational-wave sky localisations and produce transient candidates for further photometric and spectroscopic follow-up.Comment: 6 pages, 2 figures, version 2, reference added typo correction, Accepted by MNRA

    The restframe ultraviolet of superluminous supernovae -- I. Potential as cosmological probes

    Full text link
    Superluminous supernovae (SLSNe) have been detected to z∼4z\sim4 and can be detected to z≳15z\gtrsim15 using current and upcoming facilities. SLSNe are extremely UV luminous, and hence objects at z≳7z\gtrsim7 are detected exclusively via their rest-frame UV using optical and infrared facilities. SLSNe have great utility in multiple areas of stellar and galactic evolution. Here, we explore the potential use of SLSNe type-I as high-redshift cosmological distance indicators in their rest-frame UV. Using a SLSNe-I sample in the redshift range 1≲z≲31\lesssim z\lesssim 3, we investigate correlations between the peak absolute magnitude in a synthetic UV filter centered at 250 nm and rise time, colour and decline rate of SLSNe-I light curves. We observe a linear correlation between M0(250)M_0(250) and the rise time with an intrinsic scatter of 0.29. Interestingly, this correlation is further tightened (σint≈0.2\sigma_{int} \approx 0.2) by eliminating those SLSNe which show a pre-peak bump in their light curve. This result hints at the possibility that the "bumpy" SLSNe could belong to a different population. Weak correlations are observed between the peak luminosity and colour indices. No relationship is found between UV peak magnitude and the decline rate in contrast to what is typically found in optical band. The correlations found here are promising, and give encouraging insights for the use of SLSNe as cosmological probes at high redshifts using standardising relations in the UV. We also highlight the importance of early, and consistent, photometric data for constraining the light curve properties.Comment: Accepted for publication in MNRA

    saprEMo: a simplified algorithm for predicting detections of electromagnetic transients in surveys

    Get PDF
    The multi-wavelength detection of GW170817 has inaugurated multi-messenger astronomy. The next step consists in interpreting observations coming from population of gravitational wave sources. We introduce saprEMo, a tool aimed at predicting the number of electromagnetic signals characterised by a specific light curve and spectrum, expected in a particular sky survey. By looking at past surveys, saprEMo allows us to constrain models of electromagnetic emission or event rates. Applying saprEMo to proposed astronomical missions/observing campaigns provides a perspective on their scientific impact and tests the effect of adopting different observational strategies. For our first case study, we adopt a model of spindown-powered X-ray emission predicted for a binary neutron star merger producing a long-lived neutron star. We apply saprEMo on data collected by XMM-Newton and Chandra and during 10410^4 s of observations with the mission concept THESEUS. We demonstrate that our emission model and binary neutron star merger rate imply the presence of some signals in the XMM-Newton catalogs. We also show that the new class of X-ray transients found by Bauer et al. in the Chandra Deep Field-South is marginally consistent with the expected rate. Finally, by studying the mission concept THESEUS, we demonstrate the substantial impact of a much larger field of view in searches of X-ray transients

    Muons in the aftermath of neutron star mergers and their impact on trapped neutrinos

    Full text link
    In the upcoming years, present and next-generation gravitational wave observatories will detect a larger number of binary neutron star (BNS) mergers with increasing accuracy. In this context, improving BNS merger numerical simulations is crucial to correctly interpret the data and constrain the equation of state (EOS) of neutron stars (NSs). State-of-the-art simulations of BNS mergers do not include muons. However, muons are known to be relevant in the microphysics of cold NSs and are expected to have a significant role in mergers, where the typical thermodynamic conditions favour their production. Our work is aimed at investigating the impact of muons on the merger remnant. We post-process the outcome of four numerical relativity simulations of BNS mergers performed with three different baryonic EOSs and two mass ratios considering the first 1515 milliseconds after merger. We compute the abundance of muons in the remnant and analyse how muons affect the trapped neutrino component and the fluid pressure. We find that depending on the baryonic EOS, the net fraction of muons is between 30%30 \% and 70%70 \% the net fraction of electrons. Muons change the flavour hierarchy of trapped (anti-)neutrinos such that deep inside the remnant, muon anti-neutrinos are the most abundant, followed by electron anti-neutrinos. Finally, muons and trapped neutrinos modify the neutron-to-proton ratio, affecting the remnant pressure by up to 7%7\% when compared with calculations neglecting them. This work demonstrates that muons have a non-negligible effect on the outcome of BNS merger simulations, and they should be included to improve the accuracy of a simulation.Comment: 19 pages, 11 figure

    Electromagnetic Counterparts of Compact Binary Mergers

    Get PDF
    The first detection of a binary neutron star merger through gravitational waves and photons marked the dawn of multi-messenger astronomy with gravitational waves, and it greatly increased our insight in different fields of astrophysics and fundamental physics. However, many open questions on the physical process involved in a compact binary merger still remain and many of these processes concern plasma physics. With the second generation of gravitational wave interferometers approaching their design sensitivity, the new generation under design study, and new X-ray detectors under development, the high energy Universe will become more and more a unique laboratory for our understanding of plasma in extreme conditions. In this review, we discuss the main electromagnetic signals expected to follow the merger of two compact objects highlighting the main physical processes involved and some of the most important open problems in the field.Comment: 39 pages, 6 figures. Published by the Journal of Plasma Physic

    Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    Get PDF
    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the \emph{Fermi} gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016-2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼\sim a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.Comment: 24 pages, 4 figure

    The Swift Gamma-Ray Burst redshift distribution: selection biases and optical brightness evolution at high-z?

    Full text link
    We employ realistic constraints on astrophysical and instrumental selection effects to model the Gamma-Ray Burst (GRB) redshift distribution using {\it Swift} triggered redshift samples acquired from optical afterglows (OA) and the TOUGH survey. Models for the Malmquist bias, redshift desert, and the fraction of afterglows missing because of host galaxy dust extinction, are used to show how the "true" GRB redshift distribution is distorted to its presently observed biased distribution. We also investigate another selection effect arising from a correlation between EisoE_{{\rm iso}} and LoptL_{{\rm opt}}. The analysis, which accounts for the missing fraction of redshifts in the two data subsets, shows that a combination of selection effects (both instrumental and astrophysical) can describe the observed GRB redshift distribution. Furthermore, the observed distribution is compatible with a GRB rate evolution that tracks the global SFR, although the rate at high-zz cannot be constrained with confidence. Taking selection effects into account, it is not necessary to invoke high-energy GRB luminosity evolution with redshift to explain the observed GRB rate at high-zz.Comment: Version 2. Includes new data, figures and refined analysi
    • …
    corecore