490 research outputs found
USE OF SIMULATION IN PLANNING
Community/Rural/Urban Development, Research Methods/ Statistical Methods,
Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes
It is well known that the charged scalar perturbations of the
Reissner-Nordstrom metric will decay slower at very late times than the neutral
ones, thereby dominating in the late time signal. We show that at the stage of
quasinormal ringing, on the contrary, the neutral perturbations will decay
slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly
extreme RN black hole have the same imaginary parts (damping times) for charged
and neutral perturbations. An explanation of this fact is not clear but,
possibly, is connected with the Choptuik scaling.Comment: 10 pages, LaTeX, 4 figures, considerable changes made and wrong
interpretation of computations correcte
Non-linear instability of Kerr-type Cauchy horizons
Using the general solution to the Einstein equations on intersecting null
surfaces developed by Hayward, we investigate the non-linear instability of the
Cauchy horizon inside a realistic black hole. Making a minimal assumption about
the free gravitational data allows us to solve the field equations along a null
surface crossing the Cauchy Horizon. As in the spherical case, the results
indicate that a diverging influx of gravitational energy, in concert with an
outflux across the CH, is responsible for the singularity. The spacetime is
asymptotically Petrov type N, the same algebraic type as a gravitational shock
wave. Implications for the continuation of spacetime through the singularity
are briefly discussed.Comment: 11 pages RevTeX, two postscript figures included using epsf.st
Gravitational waves from quasi-spherical black holes
A quasi-spherical approximation scheme, intended to apply to coalescing black
holes, allows the waveforms of gravitational radiation to be computed by
integrating ordinary differential equations.Comment: 4 revtex pages, 2 eps figure
Field propagation in de Sitter black holes
We present an exhaustive analysis of scalar, electromagnetic and
gravitational perturbations in the background of Schwarzchild-de Sitter and
Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by
means of a semi-analytical (WKB) approach and two numerical schemes: the
characteristic and general initial value integrations. The results are compared
near the extreme cosmological constant regime, where analytical results are
presented. A unifying picture is established for the dynamics of different spin
fields.Comment: 15 pages, 16 figures, published versio
A direct numerical simulation method for complex modulus of particle dispersions
We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K.
Kim, and R. Yamamoto, Eur. Phys. J. E {\bf 26}, 361(2008)], a direct numerical
simulation method for calculating the complex modulus of the dispersion of
particles, in which we introduce a temporally oscillatory external force into
the system. The validity of the method was examined by evaluating the storage
and loss moduli of a system composed of identical
spherical particles dispersed in an incompressible Newtonian host fluid at
volume fractions of , 0.41, and 0.51. The moduli were evaluated at
several frequencies of shear flow; the shear flow used here has a zigzag
profile, as is consistent with the usual periodic boundary conditions
Strong Phase Separation in a Model of Sedimenting Lattices
We study the steady state resulting from instabilities in crystals driven
through a dissipative medium, for instance, a colloidal crystal which is
steadily sedimenting through a viscous fluid. The problem involves two coupled
fields, the density and the tilt; the latter describes the orientation of the
mass tensor with respect to the driving field. We map the problem to a 1-d
lattice model with two coupled species of spins evolving through conserved
dynamics. In the steady state of this model each of the two species shows
macroscopic phase separation. This phase separation is robust and survives at
all temperatures or noise levels--- hence the term Strong Phase Separation.
This sort of phase separation can be understood in terms of barriers to
remixing which grow with system size and result in a logarithmically slow
approach to the steady state. In a particular symmetric limit, it is shown that
the condition of detailed balance holds with a Hamiltonian which has
infinite-ranged interactions, even though the initial model has only local
dynamics. The long-ranged character of the interactions is responsible for
phase separation, and for the fact that it persists at all temperatures.
Possible experimental tests of the phenomenon are discussed.Comment: To appear in Phys Rev E (1 January 2000), 16 pages, RevTex, uses
epsf, three ps figure
On the accretion disc properties in eclipsing dwarf nova EM Cyg
In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using
the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak
Republic) and in September, 2006 in Crimean Astrophysical Observatory
(Ukraine). During our observations EM Cyg has shown outbursts in every 15-40
days. Because on the light curves of EM Cyg the partial eclipse of an accretion
disc is observed we applied the eclipse mapping technique to reconstruct the
temperature distribution in eclipsed parts of the disc. Calculations of the
accretion rate in the system were made for the quiescent and the outburst
states of activity for different distances.Comment: 6 pages, 3 figures, accepted in Astrophysics and Space Scienc
Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons
The stability of cosmological event and Cauchy horizons of spacetimes
associated with plane symmetric domain walls are studied. It is found that both
horizons are not stable against perturbations of null fluids and massless
scalar fields; they are turned into curvature singularities. These
singularities are light-like and strong in the sense that both the tidal forces
and distortions acting on test particles become unbounded when theses
singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques
Absorption and quasinormal modes of classical fields propagating on 3D and 4D de Sitter spacetime
We extensively study the exact solutions of the massless Dirac equation in 3D
de Sitter spacetime that we published recently. Using the Newman-Penrose
formalism, we find exact solutions of the equations of motion for the massless
classical fields of spin s=1/2,1,2 and to the massive Dirac equation in 4D de
Sitter metric. Employing these solutions, we analyze the absorption by the
cosmological horizon and de Sitter quasinormal modes. We also comment on the
results given by other authors.Comment: 31 page
- …