191 research outputs found

    Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics

    Full text link
    © 2019 Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons

    Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresposiveness by inhibiting UPR transducers

    Full text link
    © 2019 American Society for Clinical Investigation. Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPRassociated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl β-muricholic acid (AβM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AβM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs

    Glucose-induced down regulation of thiamine transporters in the kidney proximal tubular epithelium produces thiamine insufficiency in diabetes

    Get PDF
    Increased renal clearance of thiamine (vitamin B1) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: −76% and −53% respectively, p<0.001; transporter protein −77% and −83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy

    Asymmetric Reproductive Isolation between Two Sympatric Annual Killifish with Extremely Short Lifespans

    Get PDF
    BACKGROUND: Interspecific reproductive isolation is typically achieved by a combination of intrinsic and extrinsic barriers. Behavioural isolating barriers between sympatric, closely related species are often of primary importance and frequently aided by extrinsic factors causing spatial and temporal interspecific separation. Study systems with a severely limited role of extrinsic factors on reproductive isolation may provide valuable insights into how reproductive isolation between sympatric species is maintained. We used no-choice experimental set-up to study reproductive barriers between two closely related sympatric African killifish species, Nothobranchius furzeri and Nothobranchius orthonotus. These fish live in small temporary savannah pools and have complete spatial and temporal overlap in reproductive activities and share a similar ecology. PRINCIPAL FINDINGS: We found that the two species display largely incomplete and asymmetric reproductive isolation. Mating between N. furzeri males and N. orthonotus females was absent under standard experimental conditions and eggs were not viable when fish were forced to mate in a modified experimental setup. In contrast, male N. orthonotus indiscriminately mated with N. furzeri females, the eggs were viable, and offspring successfully hatched. Most spawnings, however, were achieved by male coercion and egg production and embryo survival were low. Behavioural asymmetry was likely facilitated by mating coercion from larger males of N. orthonotus and at relatively low cost to females. Interestingly, the direction of asymmetry was positively associated with asymmetry in post-mating reproductive barriers. SIGNIFICANCE: We showed that, in fish species with a promiscuous mating system and multiple matings each day, selection for strong mate preferences was relaxed. This effect was likely due to the small proportion of resources allocated to each single mating and the high potential cost to females from mating refusal. We highlight and discuss the fact that males of rarer species may often coercively mate with females of a related, more abundant species

    Interplay between Exonic Splicing Enhancers, mRNA Processing, and mRNA Surveillance in the Dystrophic Mdx Mouse

    Get PDF
    BACKGROUND: Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. METHODOLOGY/PRINCIPAL FINDING: Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. CONCLUSIONS/SIGNIFICANCE: Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites

    Structural basis of PROTAC cooperative recognition for selective protein degradation

    Get PDF
    Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its impact on target degradation selectivity remain elusive. We solved the crystal structure of Brd4 degrader MZ1 in complex with human VHL and the Brd4 bromodomain (Brd4BD2). The ligand folds into itself to allow formation of specific intermolecular interactions in the ternary complex. Isothermal titration calorimetry studies, supported by surface mutagenesis and proximity assays, are consistent with pronounced cooperative formation of ternary complexes with Brd4BD2. Structure-based-designed compound AT1 exhibits highly selective depletion of Brd4 in cells. Our results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation

    Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane

    Get PDF
    Rif1 is involved in telomere homeostasis, DNA replication timing, and DNA double-strand break (DSB) repair pathway choice from yeast to human. The molecular mechanisms that enable Rif1 to fulfill its diverse roles remain to be determined. Here, we demonstrate that Rif1 is S-acylated within its conserved N-terminal domain at cysteine residues C466 and C473 by the DHHC family palmitoyl acyltransferase Pfa4. Rif1 S-acylation facilitates the accumulation of Rif1 at DSBs, the attenuation of DNA end-resection, and DSB repair by non-homologous end-joining (NHEJ). These findings identify S-acylation as a posttranslational modification regulating DNA repair. S-acylated Rif1 mounts a localized DNA-damage response proximal to the inner nuclear membrane, revealing a mechanism of compartmentalized DSB repair pathway choice by sequestration of a fatty acylated repair factor at the inner nuclear membrane

    DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies

    Get PDF
    Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD–pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD–gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases
    corecore