409 research outputs found
Practical computational toolkits for dendrimers and dendrons structure design
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe
Bianchi Type-II String Cosmological Models in Normal Gauge for Lyra's Manifold with Constant Deceleration Parameter
The present study deals with a spatially homogeneous and anisotropic
Bianchi-II cosmological models representing massive strings in normal gauge for
Lyra's manifold by applying the variation law for generalized Hubble's
parameter that yields a constant value of deceleration parameter. The variation
law for Hubble's parameter generates two types of solutions for the average
scale factor, one is of power-law type and other is of the exponential form.
Using these two forms, Einstein's modified field equations are solved
separately that correspond to expanding singular and non-singular models of the
universe respectively. The energy-momentum tensor for such string as formulated
by Letelier (1983) is used to construct massive string cosmological models for
which we assume that the expansion () in the model is proportional to
the component of the shear tensor . This
condition leads to , where A, B and C are the metric coefficients
and m is proportionality constant. Our models are in accelerating phase which
is consistent to the recent observations. It has been found that the
displacement vector behaves like cosmological term in the
normal gauge treatment and the solutions are consistent with recent
observations of SNe Ia. It has been found that massive strings dominate in the
decelerating universe whereas strings dominate in the accelerating universe.
Some physical and geometric behaviour of these models are also discussed.Comment: 24 pages, 10 figure
Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania
Abstract Background Limited information regarding the clonality of circulating E. coli strains in tertiary care hospitals in low and middle-income countries is available. The purpose of this study was to determine the serotypes, antimicrobial resistance and virulence genes. Further, we carried out a phylogenetic tree reconstruction to determine relatedness of E. coli isolated from patients in a tertiary care hospital in Tanzania. Methods E. coli isolates from inpatients admitted at Kilimanjaro Christian Medical Centre between August 2013 and August 2015 were fully genome-sequenced at KCMC hospital. Sequence analysis was done for identification of resistance genes, Multi-Locus Sequence Typing, serotyping, and virulence genes. Phylogeny reconstruction using CSI Phylogeny was done to ascertain E. coli relatedness. Stata 13 (College Station, Texas 77,845 USA) was used to determine Cohen’s kappa coefficient of agreement between the phenotypically tested and whole genome sequence predicted antimicrobial resistance. Results Out of 38 E. coli isolates, 21 different sequence types (ST) were observed. Eight (21.1%) isolates belonged to ST131; of which 7 (87.5.%) were serotype O25:H4. Ten (18.4%) isolates belonged to ST10 clonal complex; of these, four (40.0%) were ST617 with serotype O89:H10. Twenty-eight (73.7%) isolates carried genes encoding beta-lactam resistance enzymes. On average, agreement across all drugs tested was 83.9%. Trimethoprim/sulphamethoxazole (co-trimoxazole) showed moderate agreement: 45.8%, kappa =15% and p = 0.08. Amoxicillin-clavulanate showed strongest agreement: 87.5%, kappa = 74% and p = 0.0001. Twenty-two (57.9%) isolates carried virulence factors for host cells adherence and 25 (65.7%) for factors that promote E. coli immune evasion by increasing survival in serum. The phylogeny analysis showed that ST131 clustering close together whereas ST10 clonal complex had a very clear segregation of the ST617 and a mix of the rest STs. Conclusion There is a high diversity of E. coli isolated from patients admitted to a tertiary care hospital in Tanzania. This underscores the necessity to routinely screen all bacterial isolates of clinical importance in tertiary health care facilities. WGS use for laboratory-based surveillance can be an effective early warning system for emerging pathogens and resistance mechanisms in LMICs
Formation of regulatory modules by local sequence duplication
Turnover of regulatory sequence and function is an important part of
molecular evolution. But what are the modes of sequence evolution leading to
rapid formation and loss of regulatory sites? Here, we show that a large
fraction of neighboring transcription factor binding sites in the fly genome
have formed from a common sequence origin by local duplications. This mode of
evolution is found to produce regulatory information: duplications can seed new
sites in the neighborhood of existing sites. Duplicate seeds evolve
subsequently by point mutations, often towards binding a different factor than
their ancestral neighbor sites. These results are based on a statistical
analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome,
and a comparison set of intergenic regulatory sequence in Saccharomyces
cerevisiae. In fly regulatory modules, pairs of binding sites show
significantly enhanced sequence similarity up to distances of about 50 bp. We
analyze these data in terms of an evolutionary model with two distinct modes of
site formation: (i) evolution from independent sequence origin and (ii)
divergent evolution following duplication of a common ancestor sequence. Our
results suggest that pervasive formation of binding sites by local sequence
duplications distinguishes the complex regulatory architecture of higher
eukaryotes from the simpler architecture of unicellular organisms
Hyperon Photoproduction in the Nucleon Resonance Region
Cross-sections and recoil polarizations for the reactions gamma + p --> K^+ +
Lambda and gamma + p --> K^+ + Sigma^0 have been measured with high statistics
and with good angular coverage for center-of-mass energies between 1.6 and 2.3
GeV. In the K^+Lambda channel we confirm a structure near W=1.9 GeV at backward
kaon angles, but our data shows a more complex s- and u- channel resonance
structure than previously seen. This structure is present at forward and
backward angles but not central angles, and its position and width change with
angle, indicating that more than one resonance is playing a role. Rising
back-angle cross sections at higher energies and large positive polarization at
backward angles are consistent with sizable s- or u-channel contributions. None
of the model calculations we present can consistently explain these aspects of
the data.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction
Spin transfer from circularly polarized real photons to recoiling hyperons
has been measured for the reactions and
. The data were obtained using the CLAS
detector at Jefferson Lab for center-of-mass energies between 1.6 and 2.53
GeV, and for . For the , the
polarization transfer coefficient along the photon momentum axis, , was
found to be near unity for a wide range of energy and kaon production angles.
The associated transverse polarization coefficient, , is smaller than
by a roughly constant difference of unity. Most significantly, the {\it
total} polarization vector, including the induced polarization ,
has magnitude consistent with unity at all measured energies and production
angles when the beam is fully polarized. For the this simple
phenomenology does not hold. All existing hadrodynamic models are in poor
agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review
Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B
The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B.
Methodology/Principal findings We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress,
generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2 − (mitosox) were
measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that
KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further,study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also
observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host
macrophag
Identifying Cis-Regulatory Sequences by Word Profile Similarity
Recognizing regulatory sequences in genomes is a continuing challenge, despite a wealth of available genomic data and a growing number of experimentally validated examples.We discuss here a simple approach to search for regulatory sequences based on the compositional similarity of genomic regions and known cis-regulatory sequences. This method, which is not limited to searching for predefined motifs, recovers sequences known to be under similar regulatory control. The words shared by the recovered sequences often correspond to known binding sites. Furthermore, we show that although local word profile clustering is predictive for the regulatory sequences involved in blastoderm segmentation, local dissimilarity is a more universal feature of known regulatory sequences in Drosophila.Our method leverages sequence motifs within a known regulatory sequence to identify co-regulated sequences without explicitly defining binding sites. We also show that regulatory sequences can be distinguished from surrounding sequences by local sequence dissimilarity, a novel feature in identifying regulatory sequences across a genome. Source code for WPH-finder is available for download at http://rana.lbl.gov/downloads/wph.tar.gz
An integrated computational pipeline and database to support whole-genome sequence annotation
We describe here our experience in annotating the Drosophila melanogaster genome sequence, in the course of which we developed several new open-source software tools and a database schema to support large-scale genome annotation. We have developed these into an integrated and reusable software system for whole-genome annotation. The key contributions to overall annotation quality are the marshalling of high-quality sequences for alignments and the design of a system with an adaptable and expandable flexible architecture
Computational Structural Analysis: Multiple Proteins Bound to DNA
BACKGROUND: With increasing numbers of crystal structures of proteinratioDNA and proteinratioproteinratioDNA complexes publically available, it is now possible to extract sufficient structural, physical-chemical and thermodynamic parameters to make general observations and predictions about their interactions. In particular, the properties of macromolecular assemblies of multiple proteins bound to DNA have not previously been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: We have performed computational structural analyses on macromolecular assemblies of multiple proteins bound to DNA using a variety of different computational tools: PISA; PROMOTIF; X3DNA; ReadOut; DDNA and DCOMPLEX. Additionally, we have developed and employed an algorithm for approximate collision detection and overlapping volume estimation of two macromolecules. An implementation of this algorithm is available at http://promoterplot.fmi.ch/Collision1/. The results obtained are compared with structural, physical-chemical and thermodynamic parameters from proteinratioprotein and single proteinratioDNA complexes. Many of interface properties of multiple proteinratioDNA complexes were found to be very similar to those observed in binary proteinratioDNA and proteinratioprotein complexes. However, the conformational change of the DNA upon protein binding is significantly higher when multiple proteins bind to it than is observed when single proteins bind. The water mediated contacts are less important (found in less quantity) between the interfaces of components in ternary (proteinratioproteinratioDNA) complexes than in those of binary complexes (proteinratioprotein and proteinratioDNA).The thermodynamic stability of ternary complexes is also higher than in the binary interactions. Greater specificity and affinity of multiple proteins binding to DNA in comparison with binary protein-DNA interactions were observed. However, protein-protein binding affinities are stronger in complexes without the presence of DNA. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the interface properties: interface area; number of interface residues/atoms and hydrogen bonds; and the distribution of interface residues, hydrogen bonds, van der Walls contacts and secondary structure motifs are independent of whether or not a protein is in a binary or ternary complex with DNA. However, changes in the shape of the DNA reduce the off-rate of the proteins which greatly enhances the stability and specificity of ternary complexes compared to binary ones
- …
