125 research outputs found

    Elongated TCR alpha chain CDR3 favors an altered CD4 cytokine profile

    Get PDF
    Background CD4 T lymphocyte activation requires T cell receptor (TCR) engagement by peptide/MHC (major histocompatibility complex) (pMHC). The TCR complementarity-determining region 3 (CDR3) contains variable Ī± and Ī² loops critical for pMHC recognition. During any immune response, tuning of TCR usage through progressive clonal selection occurs. Th1 and Th2 cells operate at different avidities for activation and display distinct transcriptional programs, although polarization may be plastic, influenced by pathogens and cytokines. We therefore hypothesized that CDR3Ī±Ī² sequence features may intrinsically influence CD4 phenotype during progression of a response. Results We show that CD4 polarization involves distinct CDR3Ī± usage: Th1 and Th17 cells favored short TCR CDR3Ī± sequences of 12 and 11 amino acids, respectively, while Th2 cells favored elongated CDR3Ī± loops of 14 amino acids, with lower predicted affinity. The dominant Th2- and Th1-derived TCRĪ± sequences with14 amino acid CDR3 loops and 12 amino acid CDR3 loops, respectively, were expressed in TCR transgenics. The functional impact of these TCRĪ± transgenes was assessed after in vivo priming with a peptide/adjuvant. The short, Th1-derived receptor transgenic T cell lines made IFNĪ³, but not IL-4, 5 or 13, while the elongated, Th2-derived receptor transgenic T cell lines made little or no IFNĪ³, but increased IL-4, 5 and 13 with progressive re-stimulations, mirrored by GATA-3 up-regulation. T cells from primed Th2 TCRĪ± transgenics selected dominant TCR VĪ² expansions, allowing us to generate TCRĪ±Ī² transgenics carrying the favored, Th2-derived receptor heterodimer. Primed T cells from TCRĪ±Ī² transgenics made little or no IL-17 or IFNĪ³, but favored IL-9 after priming with Complete Freundā€™s adjuvant and IL-4, 5, 9, 10 and 13 after priming with incomplete Freundā€™s. In tetramer-binding studies, this transgenic receptor showed low binding avidity for pMHC and polarized T cell lines show TCR avidity for Th17ā€‰>ā€‰Th1ā€‰>ā€‰Th2. While transgenic expression of a Th2-derived, ā€˜elongatedā€™ TCR-CDR3Ī± and the TCRĪ±Ī² pair, clearly generated a program shifted away from Th1 immunity and with low binding avidity, cytokine-skewing could be over-ridden by altering peptide challenge dose. Conclusion We propose that selection from responding clones with distinctive TCRs on the basis of functional avidity can direct a preference away from Th1 effector responses, favoring Th2 cytokines

    Effect of a 2-week interruption in methotrexate treatment versus continued treatment on COVID-19 booster vaccine immunity in adults with inflammatory conditions (VROOM study): a randomised, open label, superiority trial

    Get PDF
    BACKGROUND: Immunosuppressive treatments inhibit vaccine-induced immunity against SARS-CoV-2. We evaluated whether a 2-week interruption of methotrexate treatment immediately after the COVID-19 vaccine booster improved antibody responses against the S1 receptor-binding domain (S1-RBD) of the SARS-CoV-2 spike protein compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. METHODS: We did an open-label, prospective, two-arm, parallel-group, multicentre, randomised, controlled, superiority trial in 26 hospitals in the UK. We recruited adults from rheumatology and dermatology clinics who had been diagnosed with an immune-mediated inflammatory disease (eg, rheumatoid arthritis, psoriasis with or without arthritis, axial spondyloarthritis, atopic dermatitis, polymyalgia rheumatica, and systemic lupus erythematosus) and who were taking low-dose weekly methotrexate (ā‰¤25 mg per week) for at least 3 months. Participants also had to have received two primary vaccine doses from the UK COVID-19 vaccination programme. We randomly assigned the participants (1:1), using a centralised validated computer randomisation program, to suspend methotrexate treatment for 2 weeks immediately after their COVID-19 booster (suspend methotrexate group) or to continue treatment as usual (continue methotrexate group). Participants, investigators, clinical research staff, and data analysts were unmasked, while researchers doing the laboratory analyses were masked to group assignment. The primary outcome was S1-RBD antibody titres 4 weeks after receiving the COVID-19 booster vaccine dose, assessed in the intention-to-treat population. This trial is registered with ISRCT, ISRCTN11442263; following the pre-planned interim analysis, recruitment was stopped early. FINDINGS: Between Sept 30, 2021 and March 3, 2022, we recruited 340 participants, of whom 254 were included in the interim analysis and had been randomly assigned to one of the two groups: 127 in the continue methotrexate group and 127 in the suspend methotrexate group. Their mean age was 59Ā·1 years, 155 (61%) were female, 130 (51%) had rheumatoid arthritis, and 86 (34%) had psoriasis with or without arthritis. After 4 weeks, the geometric mean S1-RBD antibody titre was 22ā€‰750 U/mL (95% CI 19ā€‰314-26ā€‰796) in the suspend methotrexate group and 10ā€‰798 U/mL (8970-12ā€‰997) in the continue methotrexate group, with a geometric mean ratio (GMR) of 2Ā·19 (95% CI 1Ā·57-3Ā·04; p<0Ā·0001; mixed-effects model). The increased antibody response in the suspend methotrexate group was consistent across methotrexate dose, administration route, type of immune-mediated inflammatory disease, age, primary vaccination platform, and history of SARS-CoV-2 infection. There were no intervention-related serious adverse events. INTERPRETATION: A 2-week interruption of methotrexate treatment for people with immune-mediated inflammatory diseases resulted in enhanced boosting of antibody responses after COVID-19 vaccination. This intervention is simple, low-cost, and easy to implement, and could potentially translate to increased vaccine efficacy and duration of protection for susceptible groups. FUNDING: National Institute for Health and Care Research

    Persistent symptoms after COVID-19 are not associated with differential SARS-CoV-2 antibody or T cell immunity

    Get PDF
    Among the unknowns in decoding the pathogenesis of SARS-CoV-2 persistent symptoms in Long Covid is whether there is a contributory role of abnormal immunity during acute infection. It has been proposed that Long Covid is a consequence of either an excessive or inadequate initial immune response. Here, we analyze SARS-CoV-2 humoral and cellular immunity in 86 healthcare workers with laboratory confirmed mild or asymptomatic SARS-CoV-2 infection during the first wave. Symptom questionnaires allow stratification into those with persistent symptoms and those without for comparison. During the period up to 18-weeks post-infection, we observe no difference in antibody responses to spike RBD or nucleoprotein, virus neutralization, or T cell responses. Also, there is no difference in the profile of antibody waning. Analysis at 1-year, after two vaccine doses, comparing those with persistent symptoms to those without, again shows similar SARS-CoV-2 immunity. Thus, quantitative differences in these measured parameters of SARS-CoV-2 adaptive immunity following mild or asymptomatic acute infection are unlikely to have contributed to Long Covid causality. ClinicalTrials.gov (NCT04318314)

    The CD85j+ NK Cell Subset Potently Controls HIV-1 Replication in Autologous Dendritic Cells

    Get PDF
    Natural killer (NK) cells and dendritic cells (DC) are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC) modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j+ NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85jāˆ’ NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j+ NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j+ NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules) preferentially expressed on HIV-1-infected MDDC

    COVID-19 vaccine-induced antibody and T cell responses in immunosuppressed patients with inflammatory bowel disease after the third vaccine dose

    Get PDF
    Background: COVID-19 vaccine-induced antibody responses are reduced in patients with inflammatory bowel disease (IBD) taking infliximab or tofacitinib after two vaccine doses. We sought to determine whether immunosuppressive treatments were associated with reduced antibody and T cell responses after a third vaccine dose. Methods: 352 adults (72 healthy controls and 280 IBD) from the prospectively recruited study cohort were sampled 28-49 days after a third dose of SARS-CoV-2 vaccine. IBD medications studied included thiopurines (n=65), infliximab (n=46), thiopurine/infliximab combination therapy (n=49), ustekinumab (n=44), vedolizumab (n=50) or tofacitinib (n=26). SARS-CoV-2 spike antibody binding and T cell responses were measured. Findings: Geometric mean [geometric SD] anti-S1 RBD antibody concentrations increased in all study groups following a third dose of vaccine, but were significantly lower in patients treated with infliximab (2736.8 U/mL [4.3]; P<0.0001), infliximab and thiopurine combination (1818.3 U/mL [6.7]; P<0.0001) and tofacitinib (8071.5 U/mL [3.1]; P=0.0018) compared to controls (16774.2 U/ml [2.6]). There were no significant differences in anti-S1 RBD antibody concentrations between control subjects and thiopurine (12019.7 U/mL [2.2]; P=0.099), ustekinumab (11089.3 U/mL [2.8]; P=0.060), nor vedolizumab treated patients (13564.9 U/mL [2.4]; P=0.27). In multivariable modelling, lower anti-S1 RBD antibody concentrations were independently associated with infliximab (Geometric mean ratio 0.15, 95% CI 0.11-0.21, P<0.0001), tofacitinib (0.52, 95% CI 0.31-0.87, P=0.012) and thiopurine (0.69, 95% CI 0.51-0.95, P=0.021), but not with ustekinumab (0.64, 95% CI 0.39-1.06, P=0.083), or vedolizumab (0.84, 95% CI 0.54-1.30, P=0.43). Previous SARS-CoV-2 infection (1.58, 95% CI 1.22-2.05, P=0.00056) and older age (0.88, 95% CI 0.80-0.97, P=0.0073) were independently associated with higher and lower anti-S1 antibody concentrations respectively. However, antigen specific T cell responses were similar in IBD patients in all treatment groups studied, except for recipients of tofacitinib without evidence of previous infection, where T cell responses were significantly reduced relative to healthy controls (p=0.021). Interpretation: A third dose of COVID-19 vaccine induced a boost in antibody binding in immunosuppressed patients with IBD, but these responses were reduced in patients taking infliximab, infliximab/thiopurine combination and tofacitinib therapy. Tofacitinib was also associated with reduced T cell responses. These findings support continued prioritisation of immunosuppressed groups for further booster dosing, particularly those on Janus Kinase (JAK) inhibitors who have attenuation of both serological and cell-mediated vaccine-induced immunity. Funding: Financial support was provided as a Research Grant by Pfizer Ltd

    Antibody decay, T cell immunity and breakthrough infections following two SARS-CoV-2 vaccine doses in infliximab- and vedolizumab-treated patients

    Get PDF
    We report SARS-CoV-2 vaccine-induced immunity and risk of breakthrough infections in patients with inflammatory bowel disease treated with infliximab, a commonly used anti-TNF drug and those treated with vedolizumab, a gut-specific antibody targeting integrin a4b7 that does not impact systemic immunity. In infliximab-treated patients, the magnitude of anti-SARS-CoV2 antibodies was reduced 4-6-fold. One fifth of both infliximab- and vedolizumab-treated patients did not mount a T cell response. Antibody half-life was shorter in infliximab-treated patients. Breakthrough SARS-CoV-2 infections occurred more frequently in infliximab-treated patients and the risk was predicted by the level of antibody response after second vaccine dose. Overall, recipients of two doses of the BNT162b2 vaccine had higher anti-SARS-CoV-2 antibody concentrations, higher seroconversion rates, shorter antibody half-life and less breakthrough infections compared to ChAdOx1 nCoV-19 vaccine recipients. Irrespective of biologic treatment, higher, more sustained antibody levels were observed in patients with a history of SARS-CoV-2 infection prior to vaccination. Patients treated with anti-TNF therapy should be offered third vaccine doses

    Time series analysis and mechanistic modelling of heterogeneity and sero-reversion in antibody responses to mild SARSā€‘CoV-2 infection.

    Get PDF
    BACKGROUND: SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity. METHODS: Healthcare workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (nĀ =12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to pseudovirus neutralizing antibody measurements. FINDINGS: A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (rĀ =Ā 0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, rĀ =Ā 0.57, p<0.0001). By 21 weeks' follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling revealed faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%). INTERPRETATION: Mild SARS-CoV-2 infection is associated with heterogeneous serological responses in Euroimmun anti-S1 and RocheĀ anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. In mild infection, anti-S1 serology alone may underestimate incident infections. The mechanisms that underpin faster clearance and lower rates of sustained anti-S1 production may impact on the longevity of humoral immunity. FUNDING: Charitable donations via Barts Charity, Wellcome Trust, NIHR
    • ā€¦
    corecore