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CHRONIC MYELOGENOUS LEUKEMIA

COVID-19 vaccine boosted immunity against Omicron
in chronic myeloid leukemia patients treated with tyrosine
kinase inhibitors
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SARS-CoV-2 infection in cancer patients is associated with
increased morbidity and mortality, their status defined as ‘clinically
extremely vulnerable’ (CEV) with prioritisation for vaccine booster
programs, including fifth doses [1]. For patients with Chronic
myeloid leukemia (CML) there is uncertainty about their ability to
mount a protective immune response against SARS-CoV-2
infection after COVID-19 vaccination. A retrospective study of
8665 CML patients has reported lower COVID-19 mortality than
seen in other haematological malignancy [2].
Specific concern over vaccine responsiveness in this group

relates to the tyrosine kinase inhibitors (TKI) used in CML therapy
being associated with altered B cell immunity. Following influenza
or pneumococcal vaccination, TKI-treated CML patients showed
impaired antibody (Ab) and memory B cell (MBC) responses, while
T cell responses were intact [3]. This was attributed to off-target
drug inhibitory effects on B cell signalling kinases. Other cohort
studies of cancer patients treated with agents that impair B cell
immunity have shown prolonged COVID-19 disease and delayed
viral clearance [1, 4]. However, studies measuring spike Ab binding
after two vaccine doses [5], and serological and T cell responses in
a small number of CML patients (n= 16) after the first vaccine
dose suggested that the majority respond normally [6]. At a time
of continued uncertainty about SARS-CoV-2 infection risk among
specific CEV patient groups, detailed immune response analysis
following COVID-19 vaccination is critical to inform patients and
clinicians when making decisions about shielding and COVID-19
vaccination booster doses.
We undertook a prospective, longitudinal follow-up analysis of T

and B cell immunity after COVID-19 vaccination in 62 TKI-treated
CML patients and 44 age/sex matched healthy controls. Partici-
pants received two doses of either the AstraZeneca (n= 22, CML/
TKI group) or Pfizer vaccine (n= 40, CML/TKI group) followed by a
third Pfizer dose (Fig. 1A, S1). TKIs included imatinib, second
generation TKIs (nilotinib, dasatinib and bosutinib), ponatinib and

asciminib. We measured T cell responses to an ancestral spike
peptide pool, S1 receptor-binding domain (RBD) Ab binding, virus
neutralizing (nAb) IC50 (ancestral and B.1.1.529 (Omicron BA.1)),
and memory B cell (MBC) frequency, as previously described
[7–10]. Immune responses were compared at different timepoints
after the first, second and third COVID-19 vaccine dose.
There was no significant difference in T cell response assessed by

IFNγ ELISpot against spike antigen between CML/TKI treated
patients and controls at any timepoint (Fig. 1B). A third vaccine
dose resulted in significantly elevated T cell responses against spike
antigen compared to after the first dose in CML/TKI treated patients
and controls. There was no significant difference in spike S1 RBD Ab
binding between CML/TKI treated patients and controls at any of
the timepoints studied (Fig. 1C). There was evidence of antibody
waning after the second vaccine dose, but spike S1 RBD Ab titers
significantly increased from the second to third vaccine dose. There
were no significant differences in T cell or antibody responses
according to which TKI was being used, however, the number of
patients in each group were small and the study was not powered
to test this. We next explored concordance across the different
timepoints between S1 RBD Ab binding and T cell spike responses
for each participant (Fig. S2A, B). S1 RBD titers were ranked from left
to right, lowest to highest. The ranked responses of healthy controls
(blue) and CML/TKI patients (purple) were interspersed. The
magnitude of S1 RBD Ab binding and spike T cell response were
discordant whereby individuals with no Ab response showed a
range T cell responses against spike (Fig. S2A, B).
To explore the Ab responses further, we selected control and

CML/TKI treated patients in the top and bottom quartile of S1 RBD
binding titers (Fig. 1D). Longitudinal analysis of S1 RBD binding
showed that all CML/TKI patients within the bottom quartile
showed pronounced Ab waning such that all were undetectable
by d186 after the second dose (Fig. 1D). Nevertheless, almost all
showed complete rescue of vaccine induced S1 RBD Ab binding
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21d after the third vaccine dose (Fig. 1D). S1 RBD Ab titers from
those patients in the top quartile were more stable and titers
remained high throughout follow-up and were further boosted by
a third vaccine dose. High Ab binding responders showed potent
neutralisation of ancestral live virus, but this did not translate into
cross-protective neutralization of B.1.1.529 (Omicron, BA.1), except
in the case of 2 healthy control participants (Fig. 1E). Thus, even
individuals with high S1 RBD Ab titers following two vaccine doses
had poor coverage of B.1.1.529 cross-protective neutralizing
epitopes at d186 after the second vaccine dose. This is in line
with our previous finding that ancestral S1 RBD-binding is a poor
proxy for B.1.1.529 (Omicron, BA.1) live virus neutralization [7]. We
next considered the extent of cross-recognition of B.1.1.529 S1 by

vaccine-primed MBC (Fig. 1F). MBC frequency against ancestral
and B.1.1.529 (Omicron, BA.1) S1 was enumerated at d186 after
the second vaccine dose. CML/TKI patients and healthy controls
showed equivalent MBC frequencies against ancestral S1 protein.
In almost all cases, the MBC frequency against B.1.1.529 (Omicron)
S1 was lower, but B.1.1.529 (Omicron) specific MBC were
detectable in all but two of the samples tested, including from
those individuals who were in the lower quartile of S1 RBD Ab
responses. With the exception of one CML/TKI patient, all
individuals, including those in the lower quartile of S1 RBD titer
at day 186 after the second dose, showed significant enhance-
ment of cross-reactive Ab binding against B.1.1.529 (Omicron)
3 weeks after the third dose (Fig. 1G).
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There was no difference in the frequency of CML/TKI patients
compared to healthy controls (30/49, 61% vs 23/31, 74%; chi
square, 1.428, p= 0.2320) self-reporting PCR/lateral flow test
positive SARS-CoV-2 breakthrough infection during longitudinal
follow up. Of those participants who had breakthrough infections,
10/30 of the CML/TKI patients (Ancestral & BA.2; Ancestral & BA.1/
2; Alpha & Delta; Delta & BA.1; Delta & BA.5; BA.1 & BA.2; BA.1 &
BA.5; BA.1 & BA.5; BA.1/2 & BA.5; BA.2 & BA.5) and 5/23 of healthy
controls (Ancestral & BA.2; Alpha & Delta; Alpha & BA.2; BA.1 &
BA.5; BA.1 & BA.5) were subsequently re-infected with different
SARS-CoV-2 variants.
Higher S1 RBD Ab binding at 21 days after the third vaccine

dose was associated with a longer time interval between the most
recent vaccine dose and SARS-CoV-2 breakthrough infection
(Fig. 1H) suggesting that enhanced boosting of Ab binding levels
following COVID-19 vaccination results in more durable protection
against SARS-CoV-2 infection. The same was also true for ancestral
S1 and B.1.1.529 (Omicron, BA.1) S1 specific memory B cell
frequencies (Fig. 1I, J) where those individuals with the highest
memory B cell frequency at 186 days after the second vaccine
dose had the longest time interval between most recent vaccine
dose and breakthrough SARS-CoV-2 infection.
Our prediction based on observations for other vaccines and

known effects of TKI on B cell signalling kinases, was that Ab
responses after vaccination would be impaired, with T cell
immunity remaining intact. In fact, we observed largely intact Ab
and T cell responses, with no significant difference between
CML/TKI patients and controls. The majority showed potentially
protective anti-spike T cell and Ab binding vaccine induced
responses of similar magnitude to those of healthy controls. This
suggests that the potent activation of immune pathways by
mRNA and adenoviral vectored vaccines is largely able to
overcome the B cell activation deficits previously observed with
analysis of responses to conventional pneumococcal or influenza
vaccines. However, since December 2021 the global pandemic
has entered a phase of enhanced population vulnerability (even
in the triple-vaccinated) due to vaccine escape, resulting in
reduced Ab cross-protection against the prevalent B.1.1.529
(Omicron, BA.1) and related sub-variants, BA.2 and BA.5. It was,
therefore, of value to probe whether CML/TKI patients had cross-
protective B.1.1.529 (Omicron BA.1) MBC and binding Ab. We
found that CML/TKI patients had equivalent cross-recognition of

B.1.1.529 (Omicron, BA.1) S1 antigen at the level of MBC
frequency to healthy control subjects, and that antibody
boosting after a third vaccine dose was equally effective in
CML/TKI patients compared to healthy controls. Omicron binding
MBC are efficiently reactivated following a third dose of ancestral
spike vaccine and correlate with a corresponding increase in nAb
titers [11]. Breakthrough SARS-CoV-2 infection in our cohort with
the longest time interval between most recent vaccination dose
and infection was associated with the highest boost in S1 RBD
antibody binding after the third vaccine dose and with the
highest frequency of MBC 186 days after the second vaccine
dose irrespective of infecting variant.
In conclusion, this representative cohort of clinically stable CML

patients on TKI treatment, would not have been exceptionally
vulnerable during the initial, pre-VOC phase of the COVID-19
pandemic having made good immune responses after 3 doses of
COVID-19 vaccine. However, vaccine escape resulting in reduced,
vaccine induced cross-protective repertoires against B.1.1.529
(Omicron BA.1) and its subvariants is a significant factor in
breakthrough infection, making vaccine boosting in vulnerable
populations such as CML/TKI patients important going forward to
ensure adequate protection from severe disease, hospitalisation
and death. Our study suggests that CML patients on TKI treatment
boost Ab and cellular immunity and that those individuals with
the biggest boost in Ab titer and memory B cell frequency will
have the most durable protection against future SARS-CoV-2
breakthrough infection with a VOC. This coupled with the high
rates of vaccine breakthrough infection make uptake of COVID-19
vaccine bivalent booster dose extremely important.
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