19,169 research outputs found

    Uprated OMS Engine Status-Sea Level Testing Results

    Get PDF
    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed

    LANDSAT Range Resource Information System

    Get PDF
    A series of test products were developed from LANDSAT data sets for North Central Texas that paralleled the needs of ranchers, technical personnel, and the media. The products and evaluation questionnaires were mailed to approximately 150 ranchers who had reported an interest in evaluating the information systems. In addition to the rancher group, fourteen media people and a thirty-three member group in the agri business/technical community was also chosen to receive test products. The group responses are analyzed. Examples of the test products and associated questionnaires are included

    A sensitive infrared imaging up converter and spatial coherence of atmospheric propagation

    Get PDF
    An infrared imaging technique based on the nonlinear interaction known as upconversion was used to obtain images of several astronomical objects in the 10 micrometer spectral region, and to demonstrate quantitatively the sharper images allowed for wavelengths beyond the visible region. The deleterious effects of atmospheric inhomogeneities on telescope resolution were studied in the infrared region using the technique developed. The low quantum efficiency of the device employed severely limited its usefulness as an astronomical detector

    Two-peaked and flat-top perfect bright solitons in epsilon-near-zero nonlinear metamaterials: novel Kerr self-trapping mechanisms

    Full text link
    We analytically investigate transverse magnetic (TM) spatial bright solitons, as exact solutions of Maxwell's equations, propagating through nonlinear metamaterials whose linear dielectric permittivity is very close to zero and whose effective nonlinear Kerr parameters can be tailored to achieve values not available in standard materials. Exploiting the fact that, in the considered medium, linear and nonlinear polarization can be comparable at feasible and realistic optical intensities, we identify two novel self-trapping mechanisms able to support two-peaked and flat-top solitons, respectively. Specifically, these two novel mechanisms are based on the occurrence of critical points at which the effective nonlinear permittivity vanishes, the two mechanisms differing in the way the compensation between linear and nonlinear polarization is achieved through the non-standard values of the nonlinear parameters.Comment: 7 pages, 4 figure

    LANDSAT range resource information system project, volume 1

    Get PDF
    There are no author-identified significant results in this report

    Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor

    Get PDF
    We demonstrate an all-optical delay line in hot cesium vapor that tunably delays 275 ps input pulses up to 6.8 ns and 740 input ps pulses up to 59 ns (group index of approximately 200) with little pulse distortion. The delay is made tunable with a fast reconfiguration time (hundreds of ns) by optically pumping out of the atomic ground states.Comment: 4 pages, 6 figure

    Application of ERTS-A data to agricultural practices in the Mississippi Delta region

    Get PDF
    There are no author-identified significant results in this report

    Quantum-secured imaging

    Get PDF
    We have built an imaging system that uses a photon's position or time-of-flight information to image an object, while using the photon's polarization for security. This ability allows us to obtain an image which is secure against an attack in which the object being imaged intercepts and resends the imaging photons with modified information. Popularly known as "jamming," this type of attack is commonly directed at active imaging systems such as radar. In order to jam our imaging system, the object must disturb the delicate quantum state of the imaging photons, thus introducing statistical errors that reveal its activity.Comment: 10 pages (double spaced), 5 figure

    Coherent Backscattering of Light with Nonlinear Atomic Scatterers

    Full text link
    We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average field propagation (nonlinear refractive index) and the scattering events. Using a perturbative approach, the nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic derivation of the elastic and inelastic components of the backscattering signal both for scalar and vectorial photons. Especially, we show that the coherent backscattering phenomenon originates in some cases from the interference between three different scattering amplitudes. This is in marked contrast with the linear regime where it is due to the interference between two different scattering amplitudes. In particular we show that, if elastically scattered photons are filtered out from the photo-detection signal, the nonlinear backscattering enhancement factor exceeds the linear barrier two, consistently with a three-amplitude interference effect.Comment: 18 pages, 13 figures, submitted to Phys. Rev.
    • …
    corecore