52 research outputs found
Expanding neutrino oscillation parameter measurements in NOvA using a Bayesian approach
NOvA is a long-baseline neutrino oscillation experiment that measures oscillations in charged-current (disappearance) and (appearance) channels, and their antineutrino counterparts, using neutrinos of energies around 2 GeV over a distance of 810 km. In this work we reanalyze the dataset first examined in our previous paper [Phys. Rev. D 106, 032004 (2022)] using an alternative statistical approach based on Bayesian Markov Chain Monte Carlo. We measure oscillation parameters consistent with the previous results. We also extend our inferences to include the first NOvA measurements of the reactor mixing angle and the Jarlskog invariant. We use these results to quantify the strength of our inferences about CP violation, as well as to examine the effects of constraints from short-baseline measurements of using antineutrinos from nuclear reactors when making NOvA measurements of . Our long-baseline measurement of is also shown to be consistent with the reactor measurements, supporting the general applicability and robustness of the PMNS framework for neutrino oscillations
Supernova neutrino detection in NOvA
The NOvA long-baseline neutrino experiment uses a pair of large, segmented, liquid-scintillator calorimeters to study neutrino oscillations, using GeV-scale neutrinos from the Fermilab NuMI beam. These detectors are also sensitive to the flux of neutrinos which are emitted during a core-collapse supernova through inverse beta decay interactions on carbon at energies of O(10 MeV). This signature provides a means to study the dominant mode of energy release for a core-collapse supernova occurring in our galaxy. We describe the data-driven software trigger system developed and employed by the NOvA experiment to identify and record neutrino data from nearby galactic supernovae. This technique has been used by NOvA to self-trigger on potential core-collapse supernovae in our galaxy, with an estimated sensitivity reaching out to 10 kpc distance while achieving a detection efficiency of 23% to 49% for supernovae from progenitor stars with masses of 9.6 M☉ to 27 M☉, respectively
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
Tuberculose in Nederland en de wereld; goede, snelle diagnostiek is onmisbaar om verspreiding te stoppen.
Item does not contain fulltex
Outbreaks of healthcare-associated infections linked to water-containing hospital equipment: a literature review
BACKGROUND: Healthcare-associated infections (HAIs) are a significant cause of morbidity and mortality in hospitalized patients. Water in the environment can be a source of infection linked to outbreaks and environmental transmission in hospitals. Water safety in hospitals remains a challenge. This article has summarized available scientific literature to obtain an overview of outbreaks linked to water-containing hospital equipment and strategies to prevent such outbreaks. METHODS: We made a list of water-containing hospital equipment and devices in which water is being used in a semi-closed circuit. A literature search was performed in PubMed with a search strategy containing the names of these medical devices and one or more of the following words: outbreak, environmental contamination, transmission, infection. For each medical device, we summarized the following information: the function of the medical device, causes of contamination, the described outbreaks and possible prevention strategies. RESULTS: The following water-containing medical equipment or devices were identified: heater-cooler units, hemodialysis equipment, neonatal incubators, dental unit waterlines, fluid warmers, nebulizers, water traps, water baths, blanketrol, scalp cooling, and thermic stimulators. Of the latter three, no literature could be found. Of all other devices, one or more outbreaks associated with these devices were reported in the literature. CONCLUSIONS: The water reservoirs in water-containing medical devices can be a source of microbial growth and transmissions to patients, despite the semi-closed water circuit. Proper handling and proper cleaning and disinfection can help to reduce the microbial burden and, consequently, transmission to patients. However, these devices are often difficult to clean and disinfect because they cannot be adequately opened or disassembled, and the manufacturer's cleaning guidelines are often not feasible to execute. The development of equipment without water or fluid containers should be stimulated. Precise cleaning and disinfection guidelines and instructions are essential for instructing healthcare workers and hospital cleaning staff to prevent potential transmission to patients
The in situ efficacy of whole room disinfection devices: a literature review with practical recommendations for implementation
BACKGROUND: Terminal cleaning and disinfection of hospital patient rooms must be performed after discharge of a patient with a multidrug resistant micro-organism to eliminate pathogens from the environment. Terminal disinfection is often performed manually, which is prone to human errors and therefore poses an increased infection risk for the next patients. Automated whole room disinfection (WRD) replaces or adds on to the manual process of disinfection and can contribute to the quality of terminal disinfection. While the in vitro efficacy of WRD devices has been extensively investigated and reviewed, little is known about the in situ efficacy in a real-life hospital setting. In this review, we summarize available literature on the in situ efficacy of WRD devices in a hospital setting and compare findings to the in vitro efficacy of WRD devices. Moreover, we offer practical recommendations for the implementation of WRD devices. METHODS: The in situ efficacy was summarized for four commonly used types of WRD devices: aerosolized hydrogen peroxide, H(2)O(2) vapour, ultraviolet C and pulsed xenon ultraviolet. The in situ efficacy was based on environmental and clinical outcome measures. A systematic literature search was performed in PubMed in September 2021 to identify available literature. For each disinfection system, we summarized the available devices, practical information, in vitro efficacy and in situ efficacy. RESULTS: In total, 54 articles were included. Articles reporting environmental outcomes of WRD devices had large variation in methodology, reported outcome measures, preparation of the patient room prior to environmental sampling, the location of sampling within the room and the moment of sampling. For the clinical outcome measures, all included articles reported the infection rate. Overall, these studies consistently showed that automated disinfection using any of the four types of WRD is effective in reducing environmental and clinical outcomes. CONCLUSION: Despite the large variation in the included studies, the four automated WRD systems are effective in reducing the amount of pathogens present in a hospital environment, which was also in line with conclusions from in vitro studies. Therefore, the assessment of what WRD device would be most suitable in a specific healthcare setting mostly depends on practical considerations
Xpert MTB/RIF(R), a novel automated polymerase chain reaction-based tool for the diagnosis of tuberculosis
Item does not contain fulltextThere is an urgent need for new point of care tests for tuberculosis (TB). Xpert MTB/RIF(R) is a real-time polymerase chain reaction-based system that detects Mycobacterium tuberculosis DNA and rifampicin (RMP) resistance modulating mutations directly from clinical samples in 2 h. The sensitivity for detecting M. tuberculosis in culture-positive samples was 93.8% (60/64) and exceeded smear microscopy (40/64, 62.5%). The specificity for detecting M. tuberculosis was 92.0% (23/25) and for RMP resistance it was 100% (8/8). The test is simple to conduct and requires basic sputum handling facilities only. These characteristics render it a promising close-to-patient test for TB in various settings
- …