23 research outputs found
Characterization of a Mixed Methanotrophic Culture Capable of Chloroethylene Degradation
A consortium of methanotrophs cultured from the St. Joseph's aquifer in Schoolcraft, MI, was found to exhibit similar methane consumption rates as pure cultures of methanotrophs. The methanotrophic consortium resides within a portion of the aquifer contaminated with a mixed waste plume of perchloroethylene (PCE) and its reductive dechlorination products from natural attenuation, trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinyl chloride (VC). Oxidation kinetics for TCE, c-DCE, and VC were measured for the mixed methanotroph consortium and compared to reported rate parameters for degradation of these chloroethylene compounds by pure methanotrophic cultures. The results demonstrate that the kinetics of chloroethylene oxidation by the Schoolcraft methanotroph population mimic the degradation rates of pure methanotrophic cultures that primarily express particulate methane monooxygenase (pMMO). Molecular and biochemical analyses confirmed that sMMO was not being expressed by these cells. Rather, using competitive reverse transcriptionpolymerase chain reaction, pmoA, a gene encoding one of the polypeptides of the pMMO was found at a level of (1.57 ± 0.10) × 10–17 mol pmoA mRNA/g wet soil in soil slurries and (2.65 ± 0.43) × 10–17 mol pmoA mRNA/μl in groundwater. No expression of mmoX, a gene encoding one of the polypeptides of the sMMO, was detected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63398/1/ees.2005.22.177.pd
Transport van organische bio-afbreekbare microverontreinigingen in een geaggregeerde verzadigde bodem
Dit rapport beschrijft de ontwikkeling en computerimplementatie van een transportmodel, waarin zijn opgenomen de physische processen van convectief-dispersief transport in een dimensie met laterale diffusie naar bolvormige aggregaten en diffusief transport in aggregaten (tweede, laterale dimensie), het chemische proces van lineaire evenwichtsadsorptie in aggregaten, en het microbiologische proces van bio-degradatie in aggregaten. Bio-degradatie wordt verondersteld plaats te kunnen vinden onder aerobe omstandigheden, anaerobe omstandigheden of beide, daarom maakt een stationair model voor de zuurstofverdeling essentieel onderdeel uit van dit model. Degradatie start na een acclimatisatieperiode, en acclimatisatie start na het overschrijden van een concentratie-drempelwaarde. Gevoeligheidsanalyse van parameters en simulatie van experimenten incideren de noodzaak van nauwkeurige bepaling van de aggregaat- en bio-parameters.DGMH/BWS-BWillemsW.J
Bacterial adhesion under static and dynamic conditions.
The deposition of various pseudomonads and coryneform bacteria with different hydrophobicities (water contact angles) and negative cell surface charges on negatively charged Teflon and glass surfaces was investigated. The levels of deposition varied between 5.0 × 104 and 1.6 × 107 cells cm-2 and between 5.0 × 104 and 3.6 × 107 cells cm-2 for dynamic column and static batch systems, respectively, indicating that there was a wide variation in physicochemical interactions. Batch and column results were compared in order to better distinguish between hydrodynamic and other system-dependent influences and method-independent physicochemical interactions. Despite the shorter suspension-solid contact time in columns (1 h) than in batch systems (4 h), the level of deposition (expressed as the number of cells that adhered) divided by the applied ambient cell concentration was 4.12 ± 1.63 times higher in columns than in batch sytems for 15 of 22 strain-surface combinations studied. This demonstrates that transport of microbial particles from bulk liquid to surfaces is more efficient in dynamic columns (transport dominated by convection and diffusion) than in static batch systems (transport by diffusion only). The relative constancy of this ratio for the 15 combinations shows that physicochemical interactions affect adhesion similarly in the two systems. The deviating deposition behavior of the other seven strain-surface combinations could be attributed to method-dependent effects resulting from specific cell characteristics (e.g., to the presence of capsular polymers, to an ability to aggregate, to large cell sizes, or to a tendency to desorb after passage through an air-liquid interface)