47 research outputs found

    Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames

    Get PDF
    Numerical simulations with single-step chemistry and detailed transport are used to study premixed hydrogen/air flames in two-dimensional channel-like domains with periodic boundary conditions along the horizontal boundaries as a function of the domain height. Both unity Lewis number, where only hydrodynamic instability appears, and subunity Lewis number, where the flame propagation is strongly affected by the combined effect of hydrodynamic and thermodiffusive instabilities are considered. The simulations aim at studying the initial linear growth of perturbations superimposed on the planar flame front as well as the long-term nonlinear evolution. The dispersion relation between the growth rate and the wavelength of the perturbation characterizing the linear regime is extracted from the simulations and compared with linear stability theory. The dynamics observed during the nonlinear evolution depend strongly on the domain size and on the Lewis number. As predicted by the theory, unity Lewis number flames are found to form a single cusp structure which propagates unchanged with constant speed. The long-term dynamics of the subunity Lewis number flames include steady cell propagation, lateral flame movement, oscillations and regular as well as chaotic cell splitting and mergin

    Flame front/turbulence interaction for syngas fuels in the thin reaction zones regime: turbulent and stretched laminar flame speeds at elevated pressures and temperatures

    Get PDF
    Experiments were performed in dump-stabilized axisymmetric flames to assess turbulent flame speeds ( ST{S}_{T} ) and mean flamelets speeds (stretched laminar flame speeds, SL,k{S}_{L, k} ). Fuels with significantly different thermodiffusive properties have been investigated, ranging from pure methane to syngas ( {\mathrm{H} }_{2} \text{{\ndash}} \mathrm{CO} blends) and pure hydrogen, while the pressure was varied from 0.1 to 1.25MPa. Flame front corrugation was measured with planar laser-induced fluorescence (PLIF) of the OH radical, while turbulence quantities were determined with particle image velocimetry (PIV). Two different analyses based on mass balance were performed on the acquired flame images. The first method assessed absolute values of turbulent flame speeds and the second method, by means of an improved fractal methodology, provided normalized turbulent flame speeds ( ST/SL,k{S}_{T} / {S}_{L, k} ). Deduced average Markstein numbers exhibited a strong dependence on pressure and hydrogen content of the reactive mixture. It was shown that preferential-diffusive-thermal (PDT) effects acted primarily on enhancing the stretched laminar flame speeds rather than on increasing the flame front corrugations. Interaction between flame front and turbulent eddies measured by the fractal dimension was shown to correlate with the eddy temporal activit

    Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air

    Get PDF
    The autoignition of an axisymmetric nitrogen-diluted hydrogen plume in a turbulent coflowing stream of high-temperature air was investigated in a laboratory-scale set-up using three-dimensional numerical simulations with detailed chemistry and transport. The plume was formed by releasing the fuel from an injector with bulk velocity equal to that of the surrounding air coflow. In the ‘random spots' regime, autoignition appeared randomly in space and time in the form of scattered localized spots from which post-ignition flamelets propagated outwards in the presence of strong advection. Autoignition spots were found to occur at a favourable mixture fraction close to the most reactive mixture fraction calculated a priori from considerations of homogeneous mixtures based on inert mixing of the fuel and oxidizer streams. The value of the favourable mixture fraction evolved in the domain subject to the effect of the scalar dissipation rate. The hydroperoxyl radical appeared as a precursor to the build-up of the radical pool and the ensuing thermal runaway at the autoignition spots. Subsequently, flamelets propagated in all directions with complex dynamics, without anchoring or forming a continuous flame sheet. These observations, as well as the frequency of and scatter in appearance of the spots, are in good agreement with experiments in a similar set-up. In agreement with experimental observations, an increase in turbulence intensity resulted in a downstream shift of autoignition. An attempt is made to understand the key processes that control the mean axial and radial locations of the spots, and are responsible for the observed scatter. The advection of the most reactive mixture through the domain, and hence the history of evolution of the developing radical pools were considered to this effec

    Three-dimensional simulations of premixed hydrogen/air flames in microtubes

    Get PDF
    The dynamics of fuel-lean (equivalence ratio φ = 0.5) premixed hydrogen/air atmospheric pressure flames are investigated in open cylindrical tubes with diameters of d = 1.0 and 1.5 mm using three-dimensional numerical simulations with detailed chemistry and transport. In both cases, the inflow velocity is varied over the range where the flames can be stabilized inside the computational domain. Three axisymmetric combustion modes are observed in the narrow tube: steady mild combustion, oscillatory ignition/extinction and steady flames as the inflow velocity is varied in the range 0.5 ≤ UIN ≤ 500 cm s−1. In the wider tube, richer flame dynamics are observed in the form of steady mild combustion, oscillatory ignition/extinction, steady closed and open axisymmetric flames, steady non-axisymmetric flames and azimuthally spinning flames (0.5 ≤ UIN ≤ 600 cm s−1). Coexistence of the spinning and the axisymmetric modes is obtained over relatively wide ranges of UIN. Axisymmetric simulations are also performed in order to better understand the nature of the observed transitions in the wider tube. Fourier analysis during the transitions from the steady axisymmetric to the three-dimensional spinning mode and to the steady non-axisymmetric modes reveals that the m = 1 azimuthal mode plays a dominant role in the transition

    Study of ignition delay time and generalization of auto-ignition for PRFs in a RCEM by means of natural chemiluminescence

    Full text link
    An investigation of the effects of contour conditions and fuel properties on ignition delay time under Homogeneous Charge Compression Ignition (HCCI) conditions is presented in this study. A parametric variation of initial temperature, intake pressure, compression ratio, oxygen concentration and equivalence ratio has been carried out for Primary Reference Fuels (PRFs) in a Rapid Compression Expansion Machine (RCEM) while applying the optical technique of natural chemiluminescence along with a photo-multiplier. Additionally, the ignition delay time has been calculated from the pressure rise rate and also corresponding numerical simulations with CHEMKIN have been done. The results show that the ignition delay times from the chemical kinetic mechanisms agree with the trends obtained from the experiments. Moreover, the same mechanism proved to yield consistent results for both fuels at a wide range of conditions. On the other hand, the results from natural chemiluminescence also showed agreement with the ignition delay from the pressure signals. A 310 nm interference filter was used in order to detect the chemiluminescence of the OH* radical. In fact, the maximum area and peak intensity of the chemiluminescence measured during the combustion showed that the process of auto-ignition is generalized in the whole chamber. Moreover, the correlation of peak intensity, maximum area and ignition delay time demonstrated that natural chemiluminescence can also be used to calculate ignition delay times under different operating conditions. Finally, the area of chemiluminescence was proved to be more dependant on the fuel and ignition delay time than on the operating conditions. (C) 2015 Elsevier Ltd. All rights reserved.The authors would like to thank different members of the LAV team of the ETH-Zurich for their contribution to this work. The authors are grateful to the Universitat Politecnica de Valencia for financing the Ph.D. studies of Vera-Tudela (FPI SP1 Grant 30/05/2012) and his stay at ETH-Zurich (grant 30/12/2014). Finally, the authors would like to thank the Spanish Ministry of Education for financing the Ph.D. studies of Lopez-Pintor (Grant FPU13/02329) and his stay at ETH-Zurich (Grant EST14/00626).Desantes Fernández, JM.; García Oliver, JM.; Vera-Tudela-Fajardo, WM.; López Pintor, D.; Schneider, B.; Boulouchos, K. (2016). Study of ignition delay time and generalization of auto-ignition for PRFs in a RCEM by means of natural chemiluminescence. Energy Conversion and Management. 111:217-228. https://doi.org/10.1016/j.enconman.2015.12.052S21722811

    Fundamental Aspects of Jet Ignition for Natural Gas Engines

    Get PDF
    © 2017 SAE International. Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid. At the interface between these layers, a cylindrical reaction zone is formed that propagates in the main chamber in the axial direction assisted by convection in the jet, but with limited propagation in the cross-stream direction. For small orifice diameters, this cylinder is too thin, and the stretch rates are too high, for a vigorous reaction zone to escape the pre-chamber, making the subsequent ignition more difficult. The methane jet flame is much weaker than the one from ethylene, consistent with the lower flame speed of methane that suggests curvature-induced quenching at the nozzle and by turbulent stretch further downstream. The velocity of the jet is too high for the ambient turbulence to influence the jet, although the latter will affect the probability of initiating the main premixed flame. The experimental and modelling results are consistent with ongoing Direct Numerical Simulations at ETH Zurich

    Study of the auto-ignition phenomenon of PRFs under HCCI conditions in a RCEM by means of spectroscopy

    Full text link
    An investigation of the effects of contour conditions and fuel properties on the auto-ignition and combustion process under HCCI conditions is presented in this study. A parametric variation of initial temperature, intake pressure, compression ratio, oxygen concentration and equivalence ratio has been carried out for Primary Reference Fuels in a Rapid Compression Expansion Machine while applying spectroscopy. The results have also been contrasted with natural chemiluminescence measurements. Additionally, the experiments have been simulated in CHEMKIN and the results derived from the optical techniques have been compared with the results from the chemical kinetics of the process, validating the chemical kinetic mechanism and an additional sub-model of excited OH . Two different scenarios can be seen according to the results from the spectrograph. For very lean or very low-temperature combustions no peak of OH is seen at 310 nm of wavelength, proving that the luminosity came from the CO continuum rather than from the OH . However, for more intense combustions (richer equivalence ratios, higher temperatures or lower EGR rates) spectrography shows a clear peak of OH that has much longer time of life than the corresponding to the CO continuum. The main chemical reaction that causes this two scenarios has been identified as H þ HO2 ) 2OH. The increase of relevance of this reaction at high combustion temperatures causes a higher OH accumulation, which leads to a brighter OH emission. Finally, for low temperature combustions the CO continuum out-shines the OH radiation so the light emitted by this radical cannot be detected by means of natural chemiluminescence. 201The authors would like to thank different members of the LAV team of the ETH-Zurich for their contribution to this work. The authors are grateful to the Universitat Politecnica de Valencia for financing the Ph.D. studies of W. Vera-Tudela (FPI SP1 grant 30/05/2012) and his stay at ETH-Zurich (grant 30/12/2014). Finally, the authors would like to thank the Spanish Ministry of Education for financing the Ph.D. studies of Dario Lopez-Pintor (grant FPU13/02329) and his stay at ETH-Zurich (grant EST14/00626).Desantes Fernández, JM.; García Oliver, JM.; Vera-Tudela-Fajardo, WM.; López Pintor, D.; Schneider, B.; Boulouchos, K. (2016). Study of the auto-ignition phenomenon of PRFs under HCCI conditions in a RCEM by means of spectroscopy. Applied Energy. 179:389-400. https://doi.org/10.1016/j.apenergy.2016.06.134S38940017
    corecore