46 research outputs found

    Strong Spin-Orbit Interaction Induced in Graphene by Monolayer WS2_2

    Full text link
    We demonstrate strong anisotropic spin-orbit interaction (SOI) in graphene induced by monolayer WS2_2. Direct comparison between graphene/monolayer WS2_2 and graphene/bulk WS2_2 system in magnetotransport measurements reveals that monolayer transition metal dichalcogenide (TMD) can induce much stronger SOI than bulk. Detailed theoretical analysis of the weak-antilocalization curves gives an estimated spin-orbit energy (EsoE_{\rm so}) higher than 10 meV. The symmetry of the induced SOI is also discussed, and the dominant zz →\rightarrow −z-z symmetric SOI can only explain the experimental results. Spin relaxation by the Elliot-Yafet (EY) mechanism and anomalous resistance increase with temperature close to the Dirac point indicates Kane-Mele (KM) SOI induced in graphene.Comment: 5 pages, 4 figure

    Coherence-enhanced, phase-dependent dissipation in long SNS Josephson junctions: revealing Andreev Bound States dynamics

    Full text link
    One of the best known causes of dissipation in ac driven quantum systems stems from photon absorption. Dissipation can also be caused by the retarded response to the time-dependent excitation, and in general gives insight into the system's relaxation times and mechanisms. We address the dissipation in a mesoscopic normal wire with superconducting contacts, that sustains a supercurrent at zero frequency and that may be expected to remain dissipationless at frequency lower than the superconducting gap. We probe the high frequency linear response of a Normal/Superconductor ring to a time-dependent flux by coupling it to a highly sensitive multimode microwave resonator. Far from being the simple derivative of the current-phase relation, the ring's ac susceptibility also displays a dissipative component whose phase dependence is a signature of the dynamical processes occurring within the Andreev spectrum. We show how dissipation is driven by the competition between the two aforementioned mechanisms. Depending on the relative strength of those contributions, dissipation can be maximal at π\pi, when the minigap closes, or can be maximal near π/2 \pi/2, when the dc supercurrent is maximal. We also find that the dissipative response increases at low temperature and can even exceed the normal state conductance. The results are confronted with predictions of the Kubo linear response and time-dependent Usadel equations. This experiment shows the power of the ac susceptibility measurement of individual hybrid mesoscopic systems in probing in a controlled way the quantum dynamics of ABS. By spanning different physical regimes, our experiments provide a unique access to inelastic scattering and spectroscopy of an isolated quantum coherent system. This technique should be a tool of choice to investigate topological superconductivity and detect the topological protection of edge states

    Novel transport phenomena in graphene induced by strong spin-orbit interaction

    Get PDF
    Graphene is known to have small intrinsic spin-orbit Interaction (SOI). In this review, we demonstrate that SOIs in graphene can be strongly enhanced by proximity effect when graphene is deposited on the top of transition metal dichalcogenides. We discuss the symmetry of the induced SOIs and differences between TMD underlayers in the capacity of inducing strong SOIs in graphene. The strong SOIs contribute to bring novel phenomena to graphene, exemplified by robust supercurrents sustained even under tesla-range magnetic fields.Comment: 14 pages, 7 figure

    Strain superlattices and macroscale suspension of Graphene induced by corrugated substrates

    Full text link
    We investigate the organized formation of strain, ripples and suspended features in macroscopic CVD-prepared graphene sheets transferred onto a corrugated substrate made of an ordered arrays of silica pillars of variable geometries. Depending on the aspect ratio and sharpness of the corrugated array, graphene can conformally coat the surface, partially collapse, or lay, fakir-like, fully suspended between pillars over tens of micrometers. Upon increase of pillar density, ripples in collapsed films display a transition from random oriented pleats emerging from pillars to ripples linking nearest neighboring pillars organized in domains of given orientation. Spatially-resolved Raman spectroscopy, atomic force microscopy and electronic microscopy reveal uniaxial strain domains in the transferred graphene, which are induced and controlled by the geometry. We propose a simple theoretical model to explain the transition between suspended and collapsed graphene. For the arrays with high aspect ratio pillars, graphene membranes stays suspended over macroscopic distances with minimal interaction with pillars tip apex. It offers a platform to tailor stress in graphene layers and open perspectives for electron transport and nanomechanical applications

    Spin-dependent recombination probed through the dielectric polarizability.

    Get PDF
    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.This work was supported by the Engineering and Physical Sciences Research Council [Grants No. EP/G060738/1]. A. D. C. acknowledges support from the E. Oppenheimer Foundation and St Catharine's College, Cambridge. S. L. B. is grateful for support from the EPSRC Supergen SuperSolar Project, the Armourers and Brasiers Gauntlet Trust and Magdalene College, Cambridge.This is the final published version of the article. It was originally published in Nature Communications (Bayliss et. al, Nature Communications 2015, 6, 8534, doi:10.1038/ncomms9534). The final version is available at http://dx.doi.org/10.1038/ncomms953

    Spin-dependent recombination probed through the dielectric polarizability.

    Get PDF
    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.This work was supported by the Engineering and Physical Sciences Research Council [Grants No. EP/G060738/1]. A. D. C. acknowledges support from the E. Oppenheimer Foundation and St Catharine's College, Cambridge. S. L. B. is grateful for support from the EPSRC Supergen SuperSolar Project, the Armourers and Brasiers Gauntlet Trust and Magdalene College, Cambridge.This is the final published version of the article. It was originally published in Nature Communications (Bayliss et. al, Nature Communications 2015, 6, 8534, doi:10.1038/ncomms9534). The final version is available at http://dx.doi.org/10.1038/ncomms953

    Persistent currents in Moebius strips

    Get PDF
    Relation between the geometry of a two-dimensional sample and its equilibrium physical properties is exemplified here for a system of non-interacting electrons on a Moebius strip. Dispersion relation for a clean sample is derived and its persistent current under moderate disorder is elucidated, using statistical analysis pertinent to a single sample experiment. The flux periodicity is found to be distinct from that in a cylindrical sample, and the essential role of disorder in the ability to experimentally identify a Moebius strip is pointed out.Comment: 5 pages, 4 figure

    Enhanced shot noise of multiple Andreev reflections in a carbon nanotube quantum dot in SU(2) and SU(4) Kondo regimes

    Full text link
    The sensitivity of shot noise to the interplay between Kondo correlations and superconductivity is investigated in a carbon nanotube quantum dot connected to superconducting electrodes. Depending on the gate voltage, the SU(2) and SU(4) Kondo unitary regimes can be clearly identified. We observe enhancement of the shot noise via the Fano factor in the superconducting state. Its divergence at low bias voltage, which is more pronounced in the SU(4) regime than in the SU(2) one, is larger than what is expected from proliferation of multiple Andreev reflections predicted by the existing theories. Our result suggests that Kondo effect is responsible for this strong enhancement
    corecore