71 research outputs found

    Human lipoaspirate as autologous injectable active scaffold for one-step repair of cartilage defects

    Get PDF
    Research on mesenchymal stem cells from adipose tissue shows promising results for cell-based therapy in cartilage lesions. In these studies, cells have been isolated, expanded, and differentiated in vitro before transplantation into the damaged cartilage or onto materials used as scaffolds to deliver cells to the impaired area. The present study employed in vitro assays to investigate the potential of intra-articular injection of microfragmented lipoaspirate as a one-step repair strategy; it aimed to determine whether adipose tissue can act as a scaffold for cells naturally present at their anatomical site. Cultured clusters of lipoaspirate showed a spontaneous outgrowth of cells with a mesenchymal phenotype and with multilineage differentiation potential. Transduction of lipoaspirate clusters by lentiviral vectors expressing GFP evidenced the propensity of the outgrown cells to repopulate fragments of damaged cartilage. On the basis of the results, which showed an induction of proliferation and ECM production of human primary chondrocytes, it was hypothesized that lipoaspirate may play a paracrine role. Moreover, the structure of a floating culture of lipoaspirate, treated for 3 weeks with chondrogenic growth factors, changed: tissue with a high fat component was replaced by a tissue with a lower fat component and connective tissue rich in GAG and in collagen type I, increasing the mechanical strength of the tissue. From these promising in vitro results, it may be speculated that an injectable autologous biologically active scaffold (lipoaspirate), employed intra-articularly, may 1) become a fibrous tissue that provides mechanical support for the load on the damaged cartilage; 2) induce host chondrocytes to proliferate and produce ECM; and 3) provide cells at the site of injury, which could regenerate or repair the damaged or missing cartilage

    Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    Get PDF
    BACKGROUND:The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. METHODOLOGY/PRINCIPAL FINDINGS:We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. CONCLUSIONS/SIGNIFICANCE:This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family

    Characterization of wound responsive genes in Aquilaria malaccensis.

    Get PDF
    We report on the isolation and characterization of several genes responsive to wounding in the tropical endangered tree Aquilaria malaccensis. Wounding triggers the formation of a fragrant substance inside the tree stem. Deduced amino acid of the cloned sequences exhibited sequence similarities to their respective homologs: transcription factors of the WRKY gene family (AmWRKY) and β-1,3-glucanase (AmGLU). A homolog to phenylalanine ammonia-lyase (AmPAL) from previous work was also included. All cDNA sequences were of partial lengths. We studied their expression profiles in a wounding-stress experiment. Mechanical wounding induces AmWRKY in an early response to wounding (3 h), and elevates AmPAL and AmGLU expressions after 16 h. It is possible that AmWRKY mediates early wounding response while AmPAL mediates response to fungal infection by co-inducing AmGLU. Their homologs in other plants are known to inhibit fungal growth. Our data provide the first insight into the mechanisms of wounding responses in Aquilaria

    Protocollo per lo studio clinico-funzionale dell'atassia-teleangiectasia.

    No full text

    Multisystem triglyceride storage disorder with impaired long\u2010chain fatty acid oxidation

    No full text
    A five\u2010year\u2010old girl presented with congenital ichthyosis, hepatosplenomegaly, vacuolized granulocytes (Jordans' anomaly), and myopathy. Pathological, ultrastructural, and biochemical studies revealed nonlysosomal, multisystemic triglyceride storage. The cultured fibroblasts had increased uptake but decreased oxidation of labeled oleate. The patient failed to produce ketone bodies on fasting. A medium\u2010chain triglyceride diet reversed the hepatomegaly. These studies are all consistent with a partial defect in the catabolism of long\u2010chain fatty acids. This newly identified syndrome is presumably transmitted as an autosomal recessive trait. Copyright \ua9 1980 American Neurological Associatio
    corecore