8,478 research outputs found

    Detection of new eruptions in the Magellanic Clouds LBVs R 40 and R 110

    Full text link
    We performed a spectroscopic and photometric analysis to study new eruptions in two luminous blue variables (LBVs) in the Magellanic Clouds. We detected a strong new eruption in the LBV R40 that reached V9.2V \sim 9.2 in 2016, which is around 1.31.3 mag brighter than the minimum registered in 1985. During this new eruption, the star changed from an A-type to a late F-type spectrum. Based on photometric and spectroscopic empirical calibrations and synthetic spectral modeling, we determine that R\,40 reached Teff=58006300T_{\mathrm{eff}} = 5800-6300~K during this new eruption. This object is thereby probably one of the coolest identified LBVs. We could also identify an enrichment of nitrogen and r- and s-process elements. We detected a weak eruption in the LBV R 110 with a maximum of V9.9V \sim 9.9 mag in 2011, that is, around 1.01.0 mag brighter than in the quiescent phase. On the other hand, this new eruption is about 0.20.2 mag fainter than the first eruption detected in 1990, but the temperature did not decrease below 8500 K. Spitzer spectra show indications of cool dust in the circumstellar environment of both stars, but no hot or warm dust was present, except by the probable presence of PAHs in R\,110. We also discuss a possible post-red supergiant nature for both stars

    The 1980, 1997 and 1998 Azores earthquakes and its seismotectonic implications

    Get PDF
    We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike– slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr

    Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive

    Full text link
    Phase space can be constructed for NN equal and distinguishable subsystems that could be (probabilistically) either {\it weakly} (or {\it "locally"}) correlated (e.g., independent, i.e., uncorrelated), or {\it strongly} (or {\it globally}) correlated. If they are locally correlated, we expect the Boltzmann-Gibbs entropy SBGkipilnpiS_{BG} \equiv -k \sum_i p_i \ln p_i to be {\it extensive}, i.e., SBG(N)NS_{BG}(N)\propto N for NN \to\infty. In particular, if they are independent, SBGS_{BG} is {\it strictly additive}, i.e., SBG(N)=NSBG(1),NS_{BG}(N)=N S_{BG}(1), \forall N. However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy Sqk[1ipiq]/(q1)S_q\equiv k [1- \sum_i p_i^q]/(q-1) (with S1=SBGS_1=S_{BG}) for some special value of q1q\ne1 to be the one which extensive (i.e., Sq(N)NS_q(N)\propto N for NN \to\infty).Comment: 15 pages, including 9 figures and 8 Tables. The new version is considerably enlarged with regard to the previous ones. New examples and new references have been include

    Focal Mechanism and Rupture Process of 2004 Alhoceima (Morocco, Mw=6.2) Earthquake from Teleseismic and Regional Broad-Band Data.

    Get PDF
    We have study the focal mechanism of the 2004 Alhoceima (Morocco, Mw=6.2) earthquake using teleseismic and regional broad-band data. The solution obtained shows strike slip motion with planes striking respectively on NNE-SSW and WNW-ESE direction and horizontal pressure axes in NNW-SSE direction. We inverted body waves at teleseismic distances using as initial orientation the solution obtained from 126 P polarities. A model of extended source with rupture velocity between 2.5-3.0 km was used for the inversion. We find a complex rupture with four events at shallow depth (2-8 km). The rupture started at 6 km depth and propagated toward the south with maximum seismic moment releases at the first step (80% over a total of 1.8 x10e18 Nm). Similar result was obtained from slip inversion. An aftershock occurred on 12/03/04 (Mw=4.8) was used as empirical green function using broad-band data at re gional distances (40 to 300 km) to estimate the source time function. Comparison of these results with those obtained for the 1994 earthquake show similar behaviour, namely, a complex rupture process and apparently no relation of the 1994 and 2004 shocks with the Nekor fault, the most important geological feature in the studied area. The stress pattern derived from the 1994 and 2004 focal mechanisms are in agreement with the regional stress pattern in the Alboran Sea: horizontal compres- sion in NNW-SSE and horizontal extension in E-W direction

    An infrared diagnostic for magnetism in hot stars

    Full text link
    Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R~1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields.Comment: 4 pages, accepted for publication in A&
    corecore