115 research outputs found

    The Large Magellanic Cloud and the Distance Scale

    Full text link
    The Magellanic Clouds, especially the Large Magellanic Cloud, are places where multiple distance indicators can be compared with each other in a straight-forward manner at considerable precision. We here review the distances derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing Binaries, and show that the results from these distance indicators generally agree to within their errors, and the distance modulus to the Large Magellanic Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science. From a presentation at the conference The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective, Naples, May 201

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830≀ϔ≀0.9430.830\leq \epsilon\leq 0.943

    Allan Sandage and the Cosmic Expansion

    Full text link
    This is an account of Allan Sandage's work on (1) The character of the expansion field. For many years he has been the strongest defender of an expanding Universe. He later explained the CMB dipole by a local velocity of 220 +/- 50 km/s toward the Virgo cluster and by a bulk motion of the Local supercluster (extending out to ~3500 km/s) of 450-500 km/s toward an apex at l=275, b=12. Allowing for these streaming velocities he found linear expansion to hold down to local scales (~300 km/s). (2) The calibration of the Hubble constant. Probing different methods he finally adopted - from Cepheid-calibrated SNe Ia and from independent RR Lyr-calibrated TRGBs - H_0 = 62.3 +/- 1.3 +/- 5.0 km/s/Mpc.Comment: 12 pages, 11 figures, 1 table, Submitted to Astrophysics and Space Science, Special Issue on the Fundamental Cosmic Distance Scale in the Gaia Er
    • 

    corecore