186 research outputs found

    Cryptosporidium Oocyst Contamination in Drinking Water: A Case Study in Italy

    Get PDF
    The aim of this study was to evaluate the occurrence of Cryptosporidium oocysts in a drinking water treatment plant (DWTP) located in a rural area of northern Italy. Influent and effluent samples were collected at the DWTP over three years (2013–2016). In parallel, tap water samples from a public drinking fountain were collected as well. All samples were analyzed for the presence of Cryptosporidium spp. oocysts by a common method based on an immunomagnetic separation (IMS)/immunofluorescence assay (IFA), complemented by 4,6-diamidino-2-phenylindole (DAPI) staining. A reverse transcriptase-PCR (RT-PCR) protocol was added to evaluate oocyst viability. The results highlighted a high variability of oocyst concentrations across all samples (mean 4.3 ± 5.8/100 L) and a high variability in the percentage of DAPI-positive specimens (mean 48.2% ± 40.3%). Conversely, RT-PCR did not reveal the presence of viable C. parvum and C. hominis oocysts. A nested PCR targeting Cryptosporidium 18S ribosomal DNA, carried out in two water samples, confirmed the presence of a Cryptosporidium genotype associated with wild animals in the river and in tap water. The results obtained underline the vulnerability of the investigated surface water to Cryptosporidium spp. contamination. Although the recovered Cryptosporidium genotype is not a human pathogen, its presence demonstrates the existence of a potential pathogen Cryptosporidium spp. contamination risk. Moreover, these results underline the importance of also considering unconventional (not bacterial) biological contaminations (protozoa) in water resources in rural areas, including those of developed countries

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    Results from the European Union MAPEC_LIFE cohort study on air pollution and chromosomal damage in children: are public health policies sufficiently protective?

    Get PDF
    Background: Children are at high risk of suffering health consequences of air pollution and childhood exposure can increase the risk of developing chronic diseases in adulthood. This study, part of the MAPEC_LIFE project (LIFE12 ENV/IT/000614), aimed to investigate the associations between exposure to urban air pollutants and micronucleus (MN) frequency, as a biomarker of chromosomal damage, in buccal cells of children for supporting implementation and updating of environmental policy and legislation. Methods: This prospective epidemiological cohort study was carried out on 6- to 8-year-old children living in five Italian towns with different levels and features of air pollution. Exfoliated buccal cells of the children were sampled twice, in winter and spring, obtaining 2139 biological samples for genotoxicological investigation. Micronucleus (MN) frequency was investigated in buccal cells of children and its association with air pollution exposure was assessed applying multiple Poisson regression mixed models, including socio-demographic and lifestyle factors as confounders. We also dichotomize air pollutants\u2019 concentration according to the EU Ambient Air Quality Directives and WHO Air Quality Guidelines in all Poisson regression models to assess their risk predictive capacity. Results: Positive and statistically significant associations were found between MN frequency and PM10, PM2.5, benzene, SO2 and ozone. The increment of the risk of having MN in buccal cells for each \u3bcg/m3 increase of pollutant concentration was maximum for benzene (18.9%, 95% CIs 2.2\u201338.4%) and modest for the other pollutants (between 0.2 and 1.4%). An increased risk (between 17.9% and 59.8%) was found also for exposure to PM10, benzene and benzo(a)pyrene levels higher than the threshold limits. Conclusions: Some air pollutants are able to induce chromosomal damage in buccal cells of children even at concentrations below present EU/WHO limits. This type of biological effects may be indicative of the environmental pressure which populations are exposed to in urban areas

    Genetic Architecture of Type 2 Diabetes: Recent Progress and Clinical Implications

    Get PDF
    Review. Introductory paragraph: With the exception of rare monogenic disorders, most type 2 diabetes results from the interaction of genetic variation at multiple different chromosomal sites with environmental exposures experienced throughout the lifespan (1). This complex genetic architecture has important consequences for understanding the pathophysiology of type 2 diabetes, both for researchers seeking mechanistic insight into disease progression and for clinicians hoping to translate this new genetic information into more effective patient management. With nearly two dozen genes associated with type 2 diabetes, including some genetic variants that appear to modify responses to commonly prescribed diabetes medications and lifestyle interventions, we may be on the verge of a new era in which a patient’s individual genetic profile can add useful information to clinical care. Indeed, commercial companies are already offering genome-wide genetic profiling that includes information related to diabetes risk (2). Further advances in type 2 diabetes genetic discovery hold the promise, as yet unrealized, of enabling clinicians to individualize care for their patients by basing their clinical decisions on patient risk for disease progression, propensity to develop specific complications, and likely response to different medication classes. At present it is unknown whether individual genetic information may also serve to effectively motivate patient behavior change, a cornerstone of diabetes and pre-diabetes management. In this review of polygenic type 2 diabetes, we focus on recent discoveries made via linkage analyses, candidate gene association studies and genome-wide association (GWA) scans and highlight potential clinical applications of new genetic knowledge to risk prediction, pharmacologic management, and patient behavior. Monogenic diabetes has recently been reviewed elsewhere (3)

    Experiences with array-based sequence capture; toward clinical applications

    Get PDF
    Although sequencing of a human genome gradually becomes an option, zooming in on the region of interest remains attractive and cost saving. We performed array-based sequence capture using 385K Roche NimbleGen, Inc. arrays to zoom in on the protein-coding and immediate intron-flanking sequences of 112 genes, potentially involved in mental retardation and congenital malformation. Captured material was sequenced using Illumina technology. A data analysis pipeline was built that detects sequence variants, positions them in relation to the gene, checks for presence in databases (eg, db single-nucleotide polymorphism (SNP)) and predicts the potential consequences at the level of RNA splicing and protein translation. In the samples analyzed, all known variants were reliably detected, including pathogenic variants from control cases and SNPs derived from array experiments. Although overall coverage varied considerably, it was reproducible per region and facilitated the detection of large deletions and duplications (copy number variations), including a partial deletion in the B3GALTL gene from a patient sample. For ultimate diagnostic application, overall results need to be improved. Future arrays should contain probes from both DNA strands, and to obtain a more even coverage, one could add fewer probes from densely and more probes from sparsely covered regions

    Enhanced transfection of cell lines from Atlantic salmon through nucoleofection and antibiotic selection

    Get PDF
    Background Cell lines from Atlantic salmon kidney have made it possible to culture and study infectious salmon anemia virus (ISAV), an aquatic orthomyxovirus affecting farmed Atlantic salmon. However, transfection of these cells using calcium phosphate precipitation or lipid-based reagents shows very low transfection efficiency. The Amaxa Nucleofector technology™ is an electroporation technique that has been shown to be efficient for gene transfer into primary cells and hard to transfect cell lines. Findings Here we demonstrate, enhanced transfection of the head kidney cell line, TO, from Atlantic salmon using nucleofection and subsequent flow cytometry. Depending on the plasmid promoter, TO cells could be transfected transiently with an efficiency ranging from 11.6% to 90.8% with good viability, using Amaxa's cell line nucleofector solution T and program T-20. A kill curve was performed to investigate the most potent antibiotic for selection of transformed cells, and we found that blasticidin and puromycin were the most efficient for selection of TO cells. Conclusions The results show that nucleofection is an efficient way of gene transfer into Atlantic salmon cells and that stably transfected cells can be selected with blasticidin or puromycin

    Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions

    Get PDF
    The rapid development of next generation sequencing (NGS) technology provides a new chance to extend the scale and resolution of genomic research. How to efficiently map millions of short reads to the reference genome and how to make accurate SNP calls are two major challenges in taking full advantage of NGS. In this article, we reviewed the current software tools for mapping and SNP calling, and evaluated their performance on samples from The Cancer Genome Atlas (TCGA) project. We found that BWA and Bowtie are better than the other alignment tools in comprehensive performance for Illumina platform, while NovoalignCS showed the best overall performance for SOLiD. Furthermore, we showed that next-generation sequencing platform has significantly lower coverage and poorer SNP-calling performance in the CpG islands, promoter and 5′-UTR regions of the genome. NGS experiments targeting for these regions should have higher sequencing depth than the normal genomic region

    Research Blogs and the Discussion of Scholarly Information

    Get PDF
    The research blog has become a popular mechanism for the quick discussion of scholarly information. However, unlike peer-reviewed journals, the characteristics of this form of scientific discourse are not well understood, for example in terms of the spread of blogger levels of education, gender and institutional affiliations. In this paper we fill this gap by analyzing a sample of blog posts discussing science via an aggregator called ResearchBlogging.org (RB). ResearchBlogging.org aggregates posts based on peer-reviewed research and allows bloggers to cite their sources in a scholarly manner. We studied the bloggers, blog posts and referenced journals of bloggers who posted at least 20 items. We found that RB bloggers show a preference for papers from high-impact journals and blog mostly about research in the life and behavioral sciences. The most frequently referenced journal sources in the sample were: Science, Nature, PNAS and PLoS One. Most of the bloggers in our sample had active Twitter accounts connected with their blogs, and at least 90% of these accounts connect to at least one other RB-related Twitter account. The average RB blogger in our sample is male, either a graduate student or has been awarded a PhD and blogs under his own name

    Qualitative thematic analysis of consent forms used in cancer genome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale whole genome sequencing (WGS) studies promise to revolutionize cancer research by identifying targets for therapy and by discovering molecular biomarkers to aid early diagnosis, to better determine prognosis and to improve treatment response prediction. Such projects raise a number of ethical, legal, and social (ELS) issues that should be considered. In this study, we set out to discover how these issues are being handled across different jurisdictions.</p> <p>Methods</p> <p>We examined informed consent (IC) forms from 30 cancer genome sequencing studies to assess (1) stated purpose of sample collection, (2) scope of consent requested, (3) data sharing protocols (4) privacy protection measures, (5) described risks of participation, (6) subject re-contacting, and (7) protocol for withdrawal.</p> <p>Results</p> <p>There is a high degree of similarity in how cancer researchers engaged in WGS are protecting participant privacy. We observed a strong trend towards both using samples for additional, unspecified research and sharing data with other investigators. IC forms were varied in terms of how they discussed re-contacting participants, returning results and facilitating participant withdrawal. Contrary to expectation, there were no consistent trends that emerged over the eight year period from which forms were collected.</p> <p>Conclusion</p> <p>Examining IC forms from WGS studies elucidates how investigators are handling ELS challenges posed by this research. This information is important for ensuring that while the public benefits of research are maximized, the rights of participants are also being appropriately respected.</p
    corecore