200 research outputs found

    Molecular aspects and prognostic significance of microcalcifications in human pathology: a narrative review

    Get PDF
    The presence of calcium deposits in human lesions is largely used as imaging biomarkers of human diseases such as breast cancer. Indeed, the presence of micro- or macrocalcifications is frequently associated with the development of both benign and malignant lesions. Nevertheless, the molecular mechanisms involved in the formation of these calcium deposits, as well as the prognostic significance of their presence in human tissues, have not been completely elucidated. Therefore, a better characterization of the biological process related to the formation of calcifications in different tissues and organs, as well as the understanding of the prognostic significance of the presence of these calcium deposits into human tissues could significantly improve the management of patients characterized by microcalcifications associated lesions. Starting from these considerations, this narrative review highlights the most recent histopathological and molecular data concerning the formation of calcifications in breast, thyroid, lung, and ovarian diseases. Evidence reported here could deeply change the current point of view concerning the role of ectopic calcifications in the progression of human diseases and also in the patients' management. In fact, the presence of calcifications can suggest an unfavorable prognosis due to dysregulation of normal tissues homeostasis

    [99mTc]Sestamibi SPECT can predict proliferation Index, angiogenesis, and vascular invasion in parathyroid patients: a retrospective study

    Get PDF
    The aim of this study was to evaluate the possible association among sestamibi uptake and the main histopathological characteristics of parathyroid lesions related to aggressiveness such as the proliferation index (Ki67 expression and mitosis), angiogenesis (number of vessels), and vascular invasion in hyperparathyroidism patients. To this end, 26 patients affected by primary hyperparathyroidism subjected to both scintigraphy with [(99)mTc]Sestamibi and surgery/bioptic procedure were retrospectively enrolled. Hyperfunctioning of the parathyroid was detected in 19 patients. Our data showed a significant positive association among the sestamibi uptake and the proliferation index histologically evaluated both in terms of the number of Ki67 positive cells and mitosis. According to these data, lesions with a higher valuer of L/N (lesion to nonlesion ratio) frequently showed several vessels in tumor areas and histological evidence of vascular invasion. It is noteworthy that among patients with negative scintigraphy, 2 patients showed a neoplastic lesion after surgery (histological analysis). However, it is important to highlight that these lesions displayed very low proliferation indexes, which was evaluated in terms of number of both mitosis and Ki67-positive cells, some/rare vessels in the main lesion, and no evidence of vascular invasion. In conclusion, data obtained on patients with positive or negative scintigraphy support the hypothesis that sestamibi can be a tracer that is capable of predicting some biological characteristics of parathyroid tumors such as angiogenesis, proliferation indexes, and the invasion of surrounding tissues or vessels

    Dose-response effect of vibratory stimulus on synaptic and muscle plasticity in a middle-aged murine model

    Get PDF
    Whole body vibration plays a central role in many work categories and can represent a health risk to the musculoskeletal system and peripheral nervous system. However, studies in animal and human models have shown that vibratory training, experimentally and/or therapeutically induced, can exert beneficial effects on the whole body, as well as improve brain functioning and reduce cognitive decline related to the aging process. Since the effects of vibratory training depend on several factors, such as vibration frequency and vibration exposure time, in this work, we investigated whether the application of three different vibratory protocols could modulate synaptic and muscle plasticity in a middle-aged murine model, counteracting the onset of early symptoms linked to the aging process. To this end, we performed in vitro electrophysiological recordings of the field potential in the CA1 region of mouse hippocampal slices, as well as histomorphometric and ultrastructural analysis of muscle tissue by optic and transmission electron microscopy, respectively. Our results showed that protocols characterized by a low vibration frequency and/or a longer recovery time exert positive effects at both hippocampal and muscular level, and that these effects improve significantly by varying both parameters, with an action comparable with a dose-response effect. Thus, we suggested that vibratory training may be an effective strategy to counteract cognitive impairment, which is already present in the early stages of the aging process, and the onset of sarcopenia, which is closely related to a sedentary lifestyle. Future studies are needed to understand the underlying molecular mechanisms and to determine an optimal vibratory training protocol

    Effects of short-term aerobic exercise in a mouse model of Niemann-Pick type C Disease on synaptic and muscle plasticity

    Get PDF
    Background. Physical exercise can reduce the risk of developing chronic diseases andslow the onset of neurodegenerative diseases. Since it has not been assessed which kindof training protocol might positively modulate both synaptic and muscular plasticity inneurodegenerative diseases, we studied in a mouse model of Niemann Pick type C disease,a model of minimal Alzheimer’s Disease, the effect of a short term protocol.Methods. We evaluated the effect of a short term, aerobic uniform exercise training onsynaptic and muscle plasticity in three different mice groups: WT controls, NPC1+/-and NPC1-/- animals. The results were compared with those obtained in the sedentaryrespective groups. We analyzed the effects on synaptic plasticity by in vitro extracellularrecordings in hippocampal mouse slices; moreover hippocampal and muscle tissuemorphological structure have been investigated by transmission electron microscopy, tohighlight any structural and functional changes due to training.Results. The results indicate a rescue of long-term potentiation in homozygous but notin heterozygous mice slices and an induction of neuronal plasticity, observed by morphologicalanalysis, both in homozygous and in heterozygous trained mice.Conclusions. Hence this protocol is adequate to improve long term potent

    Dose–Response Effect of Vibratory Stimulus on Synaptic and Muscle Plasticity in a Middle-Aged Murine Model

    Get PDF
    Whole body vibration plays a central role in many work categories and can represent a health risk to the musculoskeletal system and peripheral nervous system. However, studies in animal and human models have shown that vibratory training, experimentally and/or therapeutically induced, can exert beneficial effects on the whole body, as well as improve brain functioning and reduce cognitive decline related to the aging process. Since the effects of vibratory training depend on several factors, such as vibration frequency and vibration exposure time, in this work, we investigated whether the application of three different vibratory protocols could modulate synaptic and muscle plasticity in a middle-aged murine model, counteracting the onset of early symptoms linked to the aging process. To this end, we performed in vitro electrophysiological recordings of the field potential in the CA1 region of mouse hippocampal slices, as well as histomorphometric and ultrastructural analysis of muscle tissue by optic and transmission electron microscopy, respectively. Our results showed that protocols characterized by a low vibration frequency and/or a longer recovery time exert positive effects at both hippocampal and muscular level, and that these effects improve significantly by varying both parameters, with an action comparable with a dose–response effect. Thus, we suggested that vibratory training may be an effective strategy to counteract cognitive impairment, which is already present in the early stages of the aging process, and the onset of sarcopenia, which is closely related to a sedentary lifestyle. Future studies are needed to understand the underlying molecular mechanisms and to determine an optimal vibratory training protocol

    Altered Mechanisms Underlying the Abnormal Glutamate Release in Amyotrophic Lateral Sclerosis at a Pre-Symptomatic Stage of the Disease.

    Get PDF
    Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and \u3b2-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanism

    BMP-2 Variants in Breast Epithelial to Mesenchymal Transition and Microcalcifications Origin

    Get PDF
    This study aims to investigate the possible different roles of the BMP-2 variants, cytoplasmic and nuclear variant, in both epithelial to mesenchymal transition and in microcalcifications origin in human breast cancers. To this end, the in situ expression of cytoplasmic and nuclear BMP-2 was associated with the expression of the main epithelial to mesenchymal transition biomarkers (e-cadherin and vimentin) and molecules involved in bone metabolisms (RUNX2, RANKL, SDF-1) by immunohistochemistry. In addition, the expression of cytoplasmic and nuclear BMP-2 was associated with the presence of microcalcifications. Our data showed a significant association among the number of cytoplasmic BMP-2-positive cells and the number of both vimentin (positive association) and e-cadherin (negative association) positive breast cells. Conversely, no associations were found concerning the nuclear BMP-2-positive breast cells. Surprisingly, the opposite result was obtained by analyzing the variants of BMP-2 and both the expression of RANKL and SDF-1 and the presence of microcalcifications. Specifically, the presence of microcalcifications was related to the expression of nuclear BMP-2 variant rather than the cytoplasmic one, as well as a strong association between the number of nuclear BMP-2 and the expression of the main breast osteoblast-like cells (BOLCs) biomarkers. To further corroborate these data, an in vitro experiment for demonstrating the co-expression of nBMP-2 and RANKL or vimentin or SDF-1 in breast cancer cells that acquire the capability to produce microcalcifications was developed. These investigations confirmed the association between the nBMP-2 expression and both RANKL and SDF-1. The data supports the idea that whilst cytoplasmic BMP-2 can be involved in epithelial to mesenchymal transition phenomenon, the nuclear variant is related to the essential mechanisms for the formation of breast microcalcifications. In conclusion, from these experimental and translational perspectives, the complexity of BMP-2 signaling will require a detailed understanding of the involvement of specific BMP-2 variants in breast cancers

    In vitro and in vivo efficacy of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on human melanoma

    Get PDF
    6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is a powerful inhibitor of the glutathione transferase P1-1 (GSTP1-1) and causes the disruption of the complex between GSTP1-1 and c-Jun N-terminal Kinase (JNK). This induces JNK activation and apoptosis in tumour cells. in the present work we assess the in vitro and in vivo effectiveness of NBDHEX on two human melanoma cell lines, Me501 and A375. NBDHEX shows IC50 values in the low micromolar range (IC50 of 1.2 +/- 0.1 mu M and 2.0 +/- 0.2 mu M for Me501 and A375, respectively) and is over 100 times more cytotoxic to these cell lines than temozolomide. Apoptosis is observed in Me501 cells within 3 h of the addition of NBDHEX, while in A375 cells the apoptotic event is rather late, and is preceded by a G2/M phase arrest. In both melanoma cell lines, INK activity is required for the ability of NBDHEX to trigger apoptosis, confirming that the JNK pathway is an important therapeutic target for this tumour. NBDHEX is also both effective and well tolerated in in vivo tumour models. A tumour inhibition of 70% is observed in vivo against Me501 human melanoma and a similar result is obtained on A375 model, with 63% of turnout inhibition. These findings indicate that the activation of the JNK pathway, through a selective GSTP1-1 targeting, could prove to be a promising new strategy for treating melanoma, which responds poorly to conventional therapies. (C) 2009 Elsevier Ltd. All rights reserved
    • …
    corecore