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A B S T R A C T

6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is a powerful inhibitor of the

glutathione transferase P1-1 (GSTP1-1) and causes the disruption of the complex between

GSTP1-1 and c-Jun N-terminal Kinase (JNK). This induces JNK activation and apoptosis in

tumour cells. In the present work we assess the in vitro and in vivo effectiveness of NBDHEX

on two human melanoma cell lines, Me501 and A375. NBDHEX shows IC50 values in the low

micromolar range (IC50 of 1.2 ± 0.1 lM and 2.0 ± 0.2 lM for Me501 and A375, respectively)

and is over 100 times more cytotoxic to these cell lines than temozolomide. Apoptosis is

observed in Me501 cells within 3 h of the addition of NBDHEX, while in A375 cells the apop-

totic event is rather late, and is preceded by a G2/M phase arrest. In both melanoma cell

lines, JNK activity is required for the ability of NBDHEX to trigger apoptosis, confirming that

the JNK pathway is an important therapeutic target for this tumour. NBDHEX is also both

effective and well tolerated in in vivo tumour models. A tumour inhibition of 70% is

observed in vivo against Me501 human melanoma and a similar result is obtained on

A375 model, with 63% of tumour inhibition. These findings indicate that the activation of

the JNK pathway, through a selective GSTP1-1 targeting, could prove to be a promising

new strategy for treating melanoma, which responds poorly to conventional therapies.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The increased incidence of human melanoma1 poses an enor-

mous challenge due to its high aggressiveness and lethality,

with the major problem being its pronounced resistance to

therapy.2 Therapies that include dacarbazine, an alkylating

agent, are still the most commonly utilised ones for metastatic

melanoma; in fact, several dacarbazine combination studies
er Ltd. All rights reserved
bdhex@yahoo.it (A.M. Ca
have been performed in recent years, using other antitumour

drugs and/or biological therapy drugs such as interferon or

interleukin, yet none of these such drugs significantly improve

the survival rate or even the response rate.3,4 Temozolomide is

a novel alkylating agent that has demonstrated antitumour

activity comparable to that of the current standard treatment,

dacarbazine, with the additional benefit of being able to pene-

trate the blood–brain barrier.5 Nevertheless, the enhancement
.
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of long-lasting response and survival is still extremely limited

and surgical removal of the tumour remains the only curative

treatment of malignant melanoma. Since cancer therapies

aim at the elimination of tumour cells through apoptotic cell

death, there are strong reasons to believe that the ineffective-

ness of chemotherapy in treating melanoma is mainly due to

the improper functioning of said apoptosis programmes.

Therefore, an essential therapeutic target for melanoma treat-

ment is the development of novel drugs that, either alone or in

combination, induce apoptosis and suppress survival path-

ways.6 For this reason we decided to evaluate the activity of

NBDHEX in human melanoma cell lines. This molecule is a

promising anticancer drug which activates the JNK pathway

through the targeting of the GSTP1-1 enzyme.7 GSTP1-1 is in-

volved in cellular resistance to anticancer drugs8 and binds

to NBDHEX with high affinity, inducing the dissociation of

the GSTP1-1–JNK complex and triggering a remarkable apopto-

tic effect in a variety of human cancer cell lines. The GSTP1-1

enzyme can cooperate with the multiple drug resistance pro-

tein (MRP1) and the non-ABC multi-specific transporter

RLIP76/RALBP1 to protect melanoma cells from the toxic ef-

fects of chemotherapies.9,10 Moreover, the export pump P-gly-

coprotein (P-gp) may also be overexpressed in melanoma, this

being associated with an increased invasive behaviour of the

tumour.11 It is well known that NBDHEX is not a substrate of

MRP1 or P-gp export pumps12–14 and its possible interaction

with RLIP76 is under investigation. In this study we show that

NBDHEX is able to trigger apoptosis in the Me501 melanoma

cell line through the activation of the JNK/c-Jun pathway. We

also tested this compound on A375 melanoma cells, which

are known to express high levels of GSTP1-1 and MRP1.9 In

addition, this cell line over expresses Bcl-2, FLIP and IAPs (XIAP

and survivin), which all contribute to the prevention of cas-

pase activation and apoptosis.15 We found that NBDHEX also

causes cell death in the A375 cell line, even though the time

course of apoptosis is different. Moreover, NBDHEX induces a

significant growth inhibition of both tumours in melanoma

mouse models, highlighting the in vivo antitumour efficacy of

this molecule for the first time.

2. Materials and methods

2.1. Drugs

NBDHEX was synthesised as reported by Ricci and col-

leagues16 and dissolved in DMSO. SP600125 and SB203580

were purchased from Calbiochem-Novabiochem (Darmstadt,

Germany). Cycloheximide and Temozolomide were Sigma

Co. (St. Louis, MO) products.

2.2. Cell lines, culture and treatments

The Me501 cell line was generated from tissue obtained from a

metastatic melanoma patient,17 while the human melanoma

cell line A375 was obtained from the American Type Cell Cul-

ture Collection (ATCC). Cells were maintained at 37 �C and 5%

CO2 in a humidified atmosphere in RPMI (Me501) or DMEM

(A375), supplemented with 10% FBS (v/v), 2 mM L-glutamine,

100 U/mL of penicillin and 100 mg/mL streptomycin (Sigma

Co., St. Louis, MO). For all the experiments, cells were seeded
in culture flasks at a density of 50,000 cells/cm.2 After 48 h,

the cells were exposed to NBDHEX and allowed to incubate

for up to 48 h. NBDHEX was diluted in culture medium at the

desired concentration immediately before use. The DMSO

concentration in the culture medium never exceeded 0.01%

(v/v), a dosage at which it has no cytotoxic effect on our cell

lines. NBDHEX was also added to cells that were pre-treated

for 1 h with the JNK inhibitor SP600125 (20 lM), for 30 min with

the p38 inhibitor SB203580 (10 lM) or for 1 h with the protein

synthesis inhibitor cycloheximide (36 lM). Cells were collected

at different time points and frozen for further analysis.

2.3. Cell growth assay

Drug (either NBDHEX or Temozolomide) cytotoxicity was

determined in Me501 and A375 cell lines by the sulphorhod-

amine B assay18 (SRB, Sigma). In brief, the cells (2 · 104 cells

per well) were exposed to the drug at the required concentra-

tions and allowed to incubate for 48 h. After incubation, the

cell growth was evaluated by an in situ cell-fixation procedure

followed by a specific colour reaction of proteins with SRB.

The dose–response profile obtained fulfils the drug concentra-

tion needed to obtain 50% of cellular growth inhibition (IC50).

2.4. Apoptosis, necrosis and cell-cycle assay

All cell treatments were performed by using an NBDHEX con-

centration five times the IC50 values found in these cell lines;

i.e. Me501 and A375 cells were incubated with 5 lM and 10 lM

NBDHEX, respectively. For necrosis determination, aliquots of

cells were stained with trypan blue and examined by micros-

copy. Apoptosis was determined with fluorescence microscopy

by estimating the number of nuclei with typical apoptotic mor-

phology after DNA staining with the dye Hoechst 33342 (Sigma).

Apoptosis was also confirmed by measuring caspase-3 activity

through the use of the model fluorescent peptide N-Acetyl-

Asp-Glu-Val-Asp-7-amido-4-trifluoromethylcoumarin (Ac-

DEVD-AFC, Sigma) as reported by Turella et al.7 Caspase activity

was calculated as fluorescence change, measured within 1 min

from the substrate addition, and normalised per cell. For cell-

cycle analysis, cells were fixed with 70% ethanol (v/v), stained

with propidium iodide and analysed by a FACSCalibur instru-

ment (Becton–Dickinson, San Jose, CA, USA).

2.5. Western blot assay

Cell pellets were treated as previously reported.7 Proteins

(30 lg) were loaded into a 12% SDS–polyacrylamide gel and

transferred onto a nitrocellulose membrane (Bio-Rad). Mono-

clonal antiphospho-activated JNK isoform (1:1000, Santa

Cruz), polyclonal antiphospho-activated c-Jun (1:1000, Cell

Signaling), monoclonal antip21Waf1/Cip1 (1:2000, Cell Signaling),

anticaspase-8 (1:1000, Upstate) and -9 (1:1000, Cell Signaling)

and antib-tubulin (1:5000, Sigma) were used as primary

antibodies. Antirabbit and antimouse secondary antibodies

(Sigma) were used at the appropriate dilutions.

2.6. In vivo tumour xenograft study

The in vivo antitumour efficacy of NBDHEX was evaluated on

human melanoma (Me501 and A375) models. Tumour cells
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were injected subcutaneous (s.c.) into the right flank of

immunodeficient mice (2 · 106 cells/mouse). The animals

were then divided into groups of eight and used at 4–5 weeks

of age to avoid immunoglobulin production and B-lympho-

cyte generation (leaky phenotype). Me501 cells were easily

transplanted into SCID mice which are even more immuno-

deficient than nude mice and represent a good model for

the investigation of the in vivo behaviour of the Me501cell line.

When the tumour was about 20 mm3, CB.17 SCID/SCID female

mice (Harlan, Italy) were treated (daily · 20) with 0.8, 8.0 or

80 mg/kg/d of NBDHEX administered per os in a volume of

0.2 ml of DMSO. A375 xenografts were established in athymic

(nude) mice which are the standard recipients of this human

malignancy. As soon as the tumours reached an average vol-

ume of 100–200 mm3, athymic Balb Nu/Nu male mice (Harlan,

Italy) were treated (daily · 10) with 40 or 75 mg/kg/d of NBD-

HEX. The drug was prepared in a vehicle of 0.5% Methocel

(w/v) and administered per os in a volume of 0.2 ml. All NBD-

HEX solutions were prepared immediately before use. Tumour

growth inhibition (TI) was monitored three times a week. Tu-

mour growth was evaluated by measuring maximal and min-

imal diameters by caliper, and tumour weight was estimated

according to the following formula: tumour weight

(mg) = d2 · D/2 (where d is the minor diameter (mm) and D is

the major diameter (mm)). At sacrifice, tumours were excised,

fixed in a 10% buffered formalin (v/v), paraffin embedded and

then cut into 5 lm-thick slices for staining. A set of slides was
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Fig. 1 – Cytotoxic activity of NBDHEX on melanoma cell lines. Hu

were incubated with different NBDHEX concentrations (from 0.05

by the SRB assay (see Section 2). The dose–response profile obt

Me501 and A375, respectively. For comparative purposes, we ev

25 mM) under identical growth conditions (Panels C and D). Th

0.61 ± 0.06 mM and 0.40 ± 0.02 mM, respectively.
stained with haematoxylin eosin for the morphological study

and the count of mitosis. Additional slides were stained with

antibodies against Ki-67, cyclin D1 and caspase-3. Reactions

were revealed with 3,3 0-diaminobenzidine (DAB). All internal

organs were fixed and paraffin embedded for the morpholog-

ical study to evaluate drug effects in normal tissues. Toxicity

was evaluated on the basis of weight loss and morphological

analysis of internal organs. Treatments and experimental

handling of animals were done according to the EU Directive

(86/609) and Italian law (D.Lvo 116/1992). A veterinary surgeon

was present to check the health status of the animals to avoid

physical injury, suffering and distress.

2.7. Statistical analysis

All the experiments were repeated at least three times; results

are presented as means ± SD. Statistical evaluation was done

using the Student’s t-test. The criterion for statistical signifi-

cance used was P < 0.05.

3. Results

3.1. Cytotoxic effect of NBDHEX on Me501 and A375 cell
lines

We first measured the NBDHEX uptake and efflux kinetics in

both A375 and Me501 cell lines as previously reported12. Flow
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ained gave IC50 values of 1.2 ± 0.1 lM and 2.0 ± 0.2 lM for

aluated the cytotoxic activity of temozolomide (from 0.01 to

e IC50 values of this drug for Me501 and A375 cells were
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cytometric analysis revealed that the intracellular equilib-

rium concentration was reached after 15–30 min of NBDHEX

treatment in A375 cells and after 30–60 min in Me501 cells

(data not shown). We then analysed the cytotoxic effect of

NBDHEX on both Me501 and A375 cell lines. The dose–re-

sponse profile obtained after 48 h of treatment with NBDHEX

gave IC50 values of 1.2 ± 0.1 lM and 2.0 ± 0.2 lM for Me501 and

A375, respectively (Fig. 1, panels A and B). NBDHEX was also

compared to temozolomide under identical growth condi-

tions. After 48 h of treatment, the IC50 values of temozolo-

mide for Me501 and A375 cells were 0.61 ± 0.06 mM and

0.40 ± 0.02 mM, respectively (Fig. 1, panels C and D). There-

fore, the NBDHEX antitumour efficacy in melanoma cell lines

is comparable to that observed in other tumour cell

lines,7,12,19 and is over 100 times higher than that of temozol-

omide, indicating that NBDHEX is a potential candidate for

the treatment of melanoma as well.

3.2. NBDHEX triggers apoptosis in Me501 and A375 cells

To determine if the NBDHEX treatment was able to trigger cell

death in melanoma, we evaluated the occurrence of apoptosis

by determining the degree of nuclear condensation and frag-

mentation (Fig. 2, panel A). Fluorescence microscopy analysis
Fig. 2 – NBDHEX induces apoptosis in Me501 and A375 cell lines.

treatment with NBDHEX. Panel B, The time-course analysis of N

number of nuclei with typical apoptotic morphology. Panel C, T

evaluated as reported in Section 2 and expressed as percentage

5 lM and 10 lM NBDHEX, respectively (j) and untreated cells (m

(active) caspase-9 were detected at indicated time points in bot

respectively. b-Tubulin was used as loading control. The immun

that gave similar results.
revealed that apoptosis in Me501 cells occurred within 3 h

and continued to increase throughout the incubation period,

reaching approximately 60% at 24 h. In A375 cells, the apopto-

tic event was rather late compared to Me501 cells; in fact, the

percentage of apoptotic cells was 22% and 38% at 24 and 48 h,

respectively (Fig. 2, panel B). Apoptosis was also confirmed by

a time-dependent increase in caspase-3 activity. The proteo-

lytic activity paralleled the time course of nuclear fragmenta-

tion in both Me501 and A375 cell lines (Fig. 2, panel C).

Moreover, an early activation of caspase-9 was observed in

the Me501 cell line, while an active caspase-9 band was ob-

served only at 24–48 h in A375 cells (Fig. 2, panel D). Con-

versely, pro-caspase-8 was not affected by NBDHEX

treatment in both cell lines as neither change in the expres-

sion level nor appearance of cleaved bands (data not shown)

was observed. This is in accordance with previous evidence

showing that NBDHEX triggers an intrinsic apoptotic

pathway.12

3.3. NBDHEX causes cell-cycle arrest in A375 cells

In A375 cells, exposure to NBDHEX caused an early cell

growth inhibition (Fig. 3, panel A). The early reduction of

the number of cells was not a consequence of cell death, as
Panel A, Cells were stained with Hoechst 33342 after 24 h of

BDHEX-driven apoptosis was determined by estimating the

he time-dependent increase in caspase-3 activity was

of the maximum value. Me501 and A375 cells treated with

). Panel D, The levels of uncleaved (inactive) and cleaved

h Me501 and A375 cells treated with 5 and 10 lM NBDHEX,

oblot shown is from one experiment representative of three
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the degree of necrosis did not exceed 5% up to 12 h of treat-

ment. Flow cytometric analysis showed a time-dependent

accumulation of cells in the G2/M phase (Fig. 3, panels B

and C). On the other hand, flow cytometric analysis of

Me501 cells showed no time-dependent accumulation in the

G2/M phase (data not shown), consistent with the earlier acti-

vation of the caspases and apoptosis in this cell line.

3.4. Effect of JNK and p38 inhibition

The mitogen-activated protein kinases (MAPKs) JNK and p38

play a relevant role in regulating both the apoptotic event
and the cell-cycle arrest. NBDHEX is able to induce the activa-

tion of these MAPKs in cancer cells from different tis-

sues.7,12,13 Therefore, to establish the possible involvement

of JNK and p38 in the signalling pathways activated by NBD-

HEX, we studied the effect of specific MAPK inhibitors. In

the Me501 cell line, the JNK inhibitor SP600125 caused mor-

phological changes and G2/M arrest; hence the role of JNK

could not be established in this cell line. Non-toxic concentra-

tions of SP600125 caused a drastic decrease in caspase-3

activity in A375 cell line, suggesting the involvement of the

JNK pathway in the NBDHEX-mediated apoptosis (Fig. 4, panel

A). By contrast, SP600125 did not revert cell-cycle arrest (Fig. 4,
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panel A). Non-toxic concentrations of the p38 inhibitor,

SB203580 did not protect Me501 cells against apoptosis trig-

gered by NBDHEX (Fig. 4, panel B). Likewise, SB203580 did

not suppress caspase-3 activation in A375 cells treated with

NBDHEX but caused an increase in caspase-3 activity. More-

over, the inhibition of p38 did not reverse the cell-cycle arrest

in this cell line (Fig. 4, panel C). Therefore, the activation of

p38 seems to be not required for either the antiproliferative

or the proapoptotic effects of NBDHEX.

3.5. Evidence of JNK and c-Jun activation in Me501 and
A375 cells

Western blot analysis of Me501 cells, treated with NBDHEX,

showed a rapid and sustained increase in the phospho-active

form of JNK, which remained active up to 12 h. After 3 h, c-

Jun, a direct downstream transcription factor substrate of

JNK, was also activated (Fig. 5, panel A). Conversely, NBDHEX

caused in the A375 cell line an early transient phase of JNK

activation, characterised by faint P-JNK bands, and a second
phase, starting at approximately 12 h, by elevated amounts

of P-JNK (Fig. 5, panel B). The first P-JNK activation was con-

comitant with the activation of c-Jun and preceded apoptosis.

The late JNK activation was in parallel with the main phase of

the apoptotic event. A P-JNK band was also found in the un-

treated A375 cells, where it probably supports the active pro-

liferation of these cells; in fact, JNK is known to be

constitutively activated in melanoma.20 On the other hand,

in NBDHEX-treated cells, JNK plays a different role, it being in-

volved in the apoptotic cell death. In both Me501 and A375

cell lines, the time course of JNK activation correlated well

with the time course of caspases activation and nuclear frag-

mentation, so confirming the involvement of the JNK/c-Jun

pathway in the apoptosis induced by NBDHEX in these mela-

noma cell lines.

3.6. Evidence of p21Waf1/Cip1 activation in A375 cells

The arrest in G2/M phase is associated with upregulation of

the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1, the
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most important protein involved in both G1/S and G2/M cell-

cycle arrest.21,22 Treatment with NBDHEX resulted in a pro-

longed increase in p21 levels in A375 cells; the protein con-

centration increased after 3 h of treatment with NBDHEX

and remained at elevated levels for up to 48 h (Fig. 5, panel

C). Recent studies have demonstrated that p21 can be regu-

lated by post-translational modification mediated by MAPKs.

In particular, direct phosphorylation of p21 by JNK and p38

may increase p21’s abundance by increasing its stability.23

However, MAPKs inhibition experiments rule out the involve-

ment of both JNK and p38 in cell-cycle arrest caused by NBD-
HEX. Therefore, p21, an important mediator of the cell-cycle-

inhibitory function of p53,24 is likely regulated by a transcrip-

tional-dependent mechanism.

3.7. Role of protein synthesis in A375 cells

To clarify the requirement for protein synthesis in the events

triggered by NBDHEX in A375 cells, we utilised cycloheximide,

a specific protein synthesis inhibitor. Caspase-3 activation

was strongly reduced in the presence of cycloheximide

(Fig. 6, panel A). Therefore, the apoptotic event observed in
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Fig. 5 – JNK and c-Jun activation. The levels of P-JNK and P-c-Jun were detected at indicated time points in both Me501 (Panel

A) and A375 (Panel B) cells treated with 5 and 10 lM NBDHEX, respectively. NBDHEX also induced an increase in p21 in A375

cells (Panel C); b-Tubulin was used as loading control. The immunoblot shown is from one experiment representative of three

that gave similar results. The density of immunoreactive bands (reported below the immunoblot) was calculated using the

software Quantity One, normalised for b-tubulin and reported as arbitrary units.
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A375 cells was likely the consequence of the transcriptional

activity of c-Jun. Moreover, in the presence of protein synthe-

sis inhibitor, a lower G2/M arrest, comparable to that of the

control cells, was observed (Fig. 6, panel B), confirming that

cell-cycle arrest is a transcription-dependent event, most

likely mediated by the transcription factor p53.

3.8. In vivo studies

First, we evaluated the in vivo antitumour efficacy of NBDHEX

in SCID mice bearing early Me501 melanoma lesions. After
15 d of daily treatment, a statistically significant tumour inhi-

bition (approximately 70%) was observed (Fig. 7, panel A). At

sacrifice, melanoma nodules of mice treated and untreated

with NBDHEX (8 mg/kg) were excised and biomarkers of pro-

liferation, apoptosis and angiogenesis were determined. The

proliferation status of tumours was measured by the mitotic

index, which has been demonstrated to be a strong predictor

of outcome for several human cancers. Tumours treated with

NBDHEX showed a more than 50% decrease in the mitotic in-

dex (Fig. 7, panel C). The antiproliferative effect of NBDHEX

was also confirmed by the reduced expression of Ki-67 and
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cyclin D1, both of which are cellular markers for prolifera-

tion25 (Fig. 7, panels D and E, respectively). Apoptosis was ob-

served through the significant increase of caspase-3 positive

cells in NBDHEX-treated tumour xenografts (Fig. 7, panel F).

An example of a tumour xenograft from a control, presenting

a high number of mitotic figures and a diffuse and intense nu-

clear positivity for Ki-67 and cyclin D1, is shown in Fig. 7 (pan-

els G–J). In parallel, an example of a tumour xenograft from a

treated animal is reported, presenting nuclear condensation

and fragmentation of apoptotic cells and a low number of

cells expressing a nuclear positivity for Ki-67 and cyclin D1

(panels K–N). Moreover, the NBDHEX-treated tumour xeno-

graft shows a diffuse positive anticaspase-3 stain, while

scarce positivity is observed in the untreated tumour xeno-

graft and in the non-malignant tissue (Fig. 7, panels O–Q). Fi-

nally, haematoxylin and eosin slides do not reveal any
difference in neoangiogenesis between treated and untreated

tumour xenografts (data not shown). The efficacy of NBDHEX

was then tested in advanced A375 xenografts. In this model,

NBDHEX induced a significant decrease of tumour weight

(approximately 63%) after 10 d of daily treatment (Fig. 7, panel

B), thereby confirming previous results. In all experiments,

the compound was well tolerated, with no body weight reduc-

tion. Moreover, autopsy findings did not reveal any significant

microscopic organ (heart, lung, liver, kidney, spleen or intes-

tine) lesion.

4. Discussion

We have previously shown that NBDHEX induces apoptosis in

a variety of human cancer cell lines, including leukaemia,

small cell lung cancer and osteosarcoma.12–14,19 In this study
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Fig. 7 – In vivo antitumour efficacy of NBDHEX. (Panel A) Antitumour efficacy of NBDHEX evaluated in Me501 melanoma

xenograft-bearing SCID mice. Symbols represent the means ± SD of tumour weight determined in eight mice for each group.

After 15 d of daily treatment, a statistically significant tumour inhibition was observed (TI of approximately 70%, P < 0.05

using Student’s t-test). (Panel B) Antitumour efficacy of NBDHEX evaluated in A375 melanoma xenograft-bearing nude mice.
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markers for proliferation. (Panel F) Apoptosis in vivo was confirmed by the increase in caspase-3 expression in tumours
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we show for the first time that NBDHEX is able to inhibit mel-

anoma growth in vivo. Efficacy studies, performed on human

Me501 and A375 melanoma xenografts, resulted in significant

tumour growth inhibition (approximately 70%). The antipro-

liferative effect of NBDHEX in vivo was confirmed by the de-

crease in the mitotic index and the reduced expression of

the proliferative factors cyclin D1 and Ki-67. Furthermore,

induction of apoptosis in vivo was confirmed by measuring

an increase in the caspase-3 expression. Conversely, the drug

does not seem to affect the degree of tumour vascularisation.

NBDHEX was well tolerated at all utilised doses and this con-

firms previous acute toxicity experiments in mice, showing

low toxicity of NBDHEX up to a dose of 125 mg/kg.7 Melanoma

is one of the most common as well as the most virulent forms

of cancer, characterised by high chemoresistance and poor

prognosis.26,27 Chemoresistance in melanoma is mainly due

to improper functioning of apoptosis that is manifested in

down-regulation of proteins involved in apoptosis such as

Apaf-1, or high expression of anti-apoptotic proteins such

as Bcl-2.28,29 As a consequence, many chemotherapeutic

agents cause cell-cycle arrest but not apoptosis and this al-
lows the tumour cells to overcome chemotherapy. Our data

shows that NBDHEX has an antitumour efficacy in vitro over

100 times higher than that of temozolomide, which repre-

sents a new promising agent for the treatment of metastatic

melanoma. In particular, NBDHEX induced an early apoptotic

event in human melanoma Me501 cells, which reached about

60% after 24 h of treatment. Moreover, treatment with NBD-

HEX caused a rapid and sustained phosphorylation of JNK

and c-Jun, a direct downstream transcription factor activated

by JNK. These data confirm the mechanism already described

in CCRF-CEM and K562 leukaemias and on small cell lung

cancer.7,13 The mechanism of cell death was also evaluated

on A375 cells, which has been shown to express different pro-

teins conferring drug resistance in melanoma tumours.9,15

Interestingly, NBDHEX treatment of A375 cells first resulted

in cell-cycle arrest, but then, within 48 h, caused a remarkable

increase in apoptosis. Also in A375 cell line the JNK activity

was required for the NBDHEX-triggered apoptosis confirming

that the JNK/c-Jun pathway is an important therapeutic target

for this tumour. These results are consistent with previous

evidences showing that JNK activation is a critical event for
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the antitumour activity of several drugs in melanoma. In par-

ticular, apoptosis induced in melanoma cells by docetaxel

and vincristine, among the most active drugs in cancer treat-

ment, is strictly dependent on the activation of JNK.30,31 In

addition, our findings indicate that activation of JNK/c-Jun

pathway, through a selective GSTP1-1 targeting, could prove

a promising new strategy for treating melanoma.
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