16 research outputs found

    Multivariate KPI for energy management of cooling system in food industry

    Get PDF
    Within EU, the food industry is currently ranked among the energy-intensive sectors, mainly as a consequence of the cooling system shareover the total energy demand. As such, the definition of appropriate key performance indicators (KPI) for ammonia chillers can play a strategic role for the efficient monitoring of the energy performance of the cooling systems. The goal of this paper is to develop an appropriate management approach, to account for energy inefficiency of the single compressors, and to identify the specific variables driving the performance outliers. To this end, a new KPI is proposed which correlates the energy consumption and the different process variables. The construction of the new indicator was carried out by means of multivariate statistical analysis, in particular using Kernel Partial Least Square (KPLS).This method is able to evaluate the maximum correlation between dataset and energy consumption employing nonlinear regression techniques. The validity of the new KPI is discussed on a case study relevant to the cooling system of a frozen ready meals industry. The assessment of the proposed metric is one against Specific Energy Consumption (SEC) like indicator, typically used in the context of the Energy Management Systems

    Industrial energy management systems in Italy: state of the art and perspective

    Get PDF
    Despite the economic crisis, the impact of industry sector Share on the total primary energy demand in Italy is still significant. The certification of companies according to the standard ISO 50001:2011 ("Energy management systems Requirements and guidelines for use"), can represent a key element in the achievement of objectives set in the 20-20-20 Climate-Energy Package. This paper illustrates the state of implementation of ISO 50001 certifications in Italy, reporting on the results of a questionnaire carried out as a part of a master's thesis project at Sapienza, University of Rome in collaboration with FIRE (Italian Federation for the Rational Use of Energy) that included the major certification bodies, certified companies and consultants. The purpose is to outline the current situation, identify the perspectives and highlight the pros and cons related to the implementation of an Energy Management System (EnMS). The big picture shows that Italy, one of the leading countries in energy efficiency policies, suffer from a significant delay in the implementation of the EnMS in industry with respect to Germany. The results of the survey also show that the definition of energy performance indicators, as hell as the individuations of an energy baseline and a. monitoring plan constitute the requirements most critical to comply with for companies than for consultants. It also appears that more than 35% of companies already ISO 50001 certified have received benefits in terms of cumulative energy saving above 5%, and that the main reason why they have implemented an EnMS is related to the potential impact on increasing the competitiveness of the core business

    Multivariate Key Performance Indicator of Baking Process

    Get PDF
    Abstract Energy efficiency is nowadays a subject deeply discussed in several fields, with a large potential in industry. Here proper process and energy management routines turns out to be essential to reduce the energy demand while keeping the control of the product quality. In this respect the bread baking, one of the pillar of food related industry, is an energy intensive process irrespective to the adopted oven technology or to the primary energy nature. Baking is the fundamental step of the bread production process and it entails a number of complex chemical and physical phenomena, critical to the final physical properties of bread, i.e. crust colour, crumb texture and taste. A careful balance throughout all the steps of the "manufacturing" cycle is vital to ensure the processes synchronization, in order to produce a consistent and satisfactory loaf of bread. A proper energy management of this process needs to consider such features to ensure a high quality product. As such process monitoring can not be conveniently described using customary specific energy metric (correlating the energy demand to the amount of processed material) or full three-dimensional (3D) physic-based modeling as in computational fluid dynamics (CFD). In this paper, the energy analysis of the system is carried out with a methodology rooted in the family of non parametric approaches. The aim of the study is to identify key performance indicators (KPIs) able to assess the effectiveness of the energy "use" along the baking process. Specifically, the identification of KPIs is carried out using Principal Component Analysis (PCA) of the available datasets

    An application of data-driven analysis in road tunnels monitoring

    Get PDF
    In order to comply with the minimum safety requirements imposed by the Directive 2004/54/EC it is of paramount mportance to correctly manage the operation and maintenance of road tunnels. This research describes how Artificial Intelligence techniques can play a supportive role both for maintenance operators in monitoring tunnels and for safety managers in operation. It is possible to extract relevant information from large volumes of data from sensor equipment in an efficient, fast, dynamic and adaptive way and make it immediately usable by those who manage machinery and servicesto aid quick decisions. Carrying out an analysis based on sensors in motorway tunnels, represents an important technological innovation, which would simplify tunnels management activities and therefore the detection of any possible deterioration, while keeping the risk within tolerance limits. The idea involves the creation of an algorithm for the detection of faults by acquiring data in real time from the sensors of tunnel sub-systems and using them to help identify the service state of the tunnel. The AI models are trained on a period of 6 months with one hour time series granularity measured on a road tunnel part of the Italian motorway systems. The verification has been done with reference to a number of recorded sensor faults

    Time series clustering. A complex network-based approach for feature selection in multi-sensor data

    No full text
    Distributed monitoring sensor networks are used in an ever increasing number of applications, particularly with the advent of IoT technologies. This has led to a growing demand for unconventional analytical tools to cope with a large amount of different signals. In this scenario, the modeling of time series in similar groups represents an interesting area especially for feature subset selection (FSS) purposes. Methods based on clustering algorithms are very promising for FSS, but in their original form they are unsuitable to manage the complexity of temporal dynamics in time series. In this paper we propose a clustering approach, based on complex network analysis, for the unsupervised FSS of time series in sensor networks. We used natural visibility graphs to map signal segments in the network domain, then extracted features in the form of node degree sequences of the graphs, and finally computed time series clustering through community detection algorithms. The approach was tested on multivariate signals monitored in a 1 MW cogeneration plant and the results show that it outperforms standard time series clustering in terms of both redundancy reduction and information gain. In addition, the proposed method demonstrated its merit in terms of retention of information content with respect to the original dataset in the analyzed condition monitoring system

    Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series

    No full text
    Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization process. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent failures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies. In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in wind turbines based on SCADA data. We introduce a promising neural architecture, namely a Graph Convolutional Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. This structure improves the unsupervised learning capabilities of Autoencoders by considering individual sensor measurements together with the nonlinear correlations existing among signals. On this basis, we developed a deep anomaly detection framework that was validated on 12 failure events occurred during 20 months of operation of four wind turbines. The results show that the proposed framework successfully detects anomalies and anticipates SCADA alarms by outperforming other two recent neural approaches

    Complex Network Analysis of Photovoltaic Plant Operations and Failure Modes

    No full text
    This paper presents a novel data-driven approach, based on sensor network analysis in Photovoltaic (PV) power plants, to unveil hidden precursors in failure modes. The method is based on the analysis of signals from PV plant monitoring, and advocates the use of graph modeling techniques to reconstruct and investigate the connectivity among PV field sensors, as is customary for Complex Network Analysis (CNA) approaches. Five month operation data are used in the present study. The results showed that the proposed methodology is able to discover specific hidden dynamics, also referred to as emerging properties in a Complexity Science perspective, which are not visible in the observation of individual sensor signal but are closely linked to the relationships occurring at the system level. The application of exploratory data analysis techniques on those properties demonstrated, for the specific plant under scrutiny, potential for early fault detection

    Energy profiling of end-users in service and industry sectors with use of Complex Network Analysis

    No full text
    Decarbonization scenarios advocate the transformation of energy systems to a decentralized grid of prosumers. However, in heterogeneous energy systems, profiling of end-users is still to be investigated. As a matter of fact, the knowledge of electrical load dynamics is instrumental to the system efficiency and the optimization of energy dispatch strategies. Recently, a number of clustering algorithms have been proposed to group load diagrams with similar shapes, generating typical profiles. To this end, conventional clustering algorithms are unable to capture the temporal dynamics and sequential relationships among data. This circumstance is of paramount importance in the service and industrial sectors where energy consumption trends over time are possibly non-stationary. In this paper, we aim to reconstruct the annual user energy profile identified through a non-conventional method which combines a time series clustering algorithm, namely K-Means with Dynamic Time Warping, with Complex Network Analysis. For the purpose of the present research, we have used an open database containing the data of 100 commercial and industrial consumers, collected every 5 minutes over a year. From the results, it is possible to identify different patterns of consumer behaviour and similar corporate profiles without any prior knowledge of the raw data

    Condition-Based Maintenance of Gensets in District Heating Using Unsupervised Normal Behavior Models Applied on SCADA Data

    No full text
    Increasing interest in natural gas-fired gensets is motivated by District Heating (DH) network applications, especially in urban areas. Even if they represent customary solutions, when used in DH, duty regimes are driven by network thermal energy demands resulting in discontinuous operation, which affects their remaining useful life. As such, the attention on effective condition-based maintenance has gained momentum. In this paper, a novel unsupervised anomaly detection framework is proposed for gensets in DH networks based on Supervisory Control And Data Acquisition (SCADA) data. The framework relies on multivariate Machine-Learning (ML) regression models trained with a Leave-One-Out Cross-Validation method. Model residuals generated during the testing phase are then post-processed with a sliding threshold approach based on a rolling average. This methodology is tested against nine major failures that occurred on the gas genset installed in the Aosta DH plant in Italy. The results show that the proposed framework successfully detects anomalies and anticipates SCADA alarms related to unscheduled downtime
    corecore