850 research outputs found
Finding Scientific Gems with Google
We apply the Google PageRank algorithm to assess the relative importance of
all publications in the Physical Review family of journals from 1893--2003.
While the Google number and the number of citations for each publication are
positively correlated, outliers from this linear relation identify some
exceptional papers or "gems" that are universally familiar to physicists.Comment: 6 pages, 4 figures, 2 tables, 2-column revtex4 forma
Characterizing the dynamical importance of network nodes and links
The largest eigenvalue of the adjacency matrix of the networks is a key
quantity determining several important dynamical processes on complex networks.
Based on this fact, we present a quantitative, objective characterization of
the dynamical importance of network nodes and links in terms of their effect on
the largest eigenvalue. We show how our characterization of the dynamical
importance of nodes can be affected by degree-degree correlations and network
community structure. We discuss how our characterization can be used to
optimize techniques for controlling certain network dynamical processes and
apply our results to real networks.Comment: 4 pages, 4 figure
Immunization of networks with community structure
In this study, an efficient method to immunize modular networks (i.e.,
networks with community structure) is proposed. The immunization of networks
aims at fragmenting networks into small parts with a small number of removed
nodes. Its applications include prevention of epidemic spreading, intentional
attacks on networks, and conservation of ecosystems. Although preferential
immunization of hubs is efficient, good immunization strategies for modular
networks have not been established. On the basis of an immunization strategy
based on the eigenvector centrality, we develop an analytical framework for
immunizing modular networks. To this end, we quantify the contribution of each
node to the connectivity in a coarse-grained network among modules. We verify
the effectiveness of the proposed method by applying it to model and real
networks with modular structure.Comment: 3 figures, 1 tabl
A customisable pipeline for continuously harvesting socially-minded Twitter users
On social media platforms and Twitter in particular, specific classes of
users such as influencers have been given satisfactory operational definitions
in terms of network and content metrics.
Others, for instance online activists, are not less important but their
characterisation still requires experimenting.
We make the hypothesis that such interesting users can be found within
temporally and spatially localised contexts, i.e., small but topical fragments
of the network containing interactions about social events or campaigns with a
significant footprint on Twitter.
To explore this hypothesis, we have designed a continuous user profile
discovery pipeline that produces an ever-growing dataset of user profiles by
harvesting and analysing contexts from the Twitter stream.
The profiles dataset includes key network and content-based users metrics,
enabling experimentation with user-defined score functions that characterise
specific classes of online users.
The paper describes the design and implementation of the pipeline and its
empirical evaluation on a case study consisting of healthcare-related campaigns
in the UK, showing how it supports the operational definitions of online
activism, by comparing three experimental ranking functions. The code is
publicly available.Comment: Procs. ICWE 2019, June 2019, Kore
Analysis of weighted networks
The connections in many networks are not merely binary entities, either
present or not, but have associated weights that record their strengths
relative to one another. Recent studies of networks have, by and large, steered
clear of such weighted networks, which are often perceived as being harder to
analyze than their unweighted counterparts. Here we point out that weighted
networks can in many cases be analyzed using a simple mapping from a weighted
network to an unweighted multigraph, allowing us to apply standard techniques
for unweighted graphs to weighted ones as well. We give a number of examples of
the method, including an algorithm for detecting community structure in
weighted networks and a new and simple proof of the max-flow/min-cut theorem.Comment: 9 pages, 3 figure
Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network
The application of deep learning to symbolic domains remains an active
research endeavour. Graph neural networks (GNN), consisting of trained neural
modules which can be arranged in different topologies at run time, are sound
alternatives to tackle relational problems which lend themselves to graph
representations. In this paper, we show that GNNs are capable of multitask
learning, which can be naturally enforced by training the model to refine a
single set of multidimensional embeddings and decode them
into multiple outputs by connecting MLPs at the end of the pipeline. We
demonstrate the multitask learning capability of the model in the relevant
relational problem of estimating network centrality measures, focusing
primarily on producing rankings based on these measures, i.e. is vertex
more central than vertex given centrality ?. We then show that a GNN
can be trained to develop a \emph{lingua franca} of vertex embeddings from
which all relevant information about any of the trained centrality measures can
be decoded. The proposed model achieves accuracy on a test dataset of
random instances with up to 128 vertices and is shown to generalise to larger
problem sizes. The model is also shown to obtain reasonable accuracy on a
dataset of real world instances with up to 4k vertices, vastly surpassing the
sizes of the largest instances with which the model was trained ().
Finally, we believe that our contributions attest to the potential of GNNs in
symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure
Impact of Entity Graphs on Extracting Semantic Relations
International audienceRelation extraction (RE) between a pair of entity mentions from text is an important and challenging task specially for open domain relations. Generally, relations are extracted based on the lexical and syntactical information at the sentence level. However, global information about known entities has not been explored yet for RE task. In this paper, we propose to extract a graph of entities from the overall corpus and to compute features on this graph that are able to capture some evidences of holding relationships between a pair of entities. The proposed features boost the RE performance significantly when these are combined with some linguistic features
- âŠ