27 research outputs found

    Trypanocidal Activity Of Brazilian Plants Against Epimastigote Forms From Y And Bolivia Strains Of Trypanosoma Cruzi

    Get PDF
    Chagas disease is one of the main public health problems in Latin America. Since the available treatments for this disease are not effective in providing cure, the screening of potential antiprotozoal agents is essential, mainly of those obtained from natural sources. This study aimed to provide an evaluation of the trypanocidal activity of 92 ethanol extracts from species belonging to the families Annonaceae, Apiaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Moraceae, Nyctaginaceae, and Verbenaceae against the Y and Bolivia strains of Trypanosoma cruzi. Additionally, cytotoxic activity on LLCMK2 fibroblasts was evaluated. Both the trypanocidal activity and cytotoxicity were evaluated using the MTT method, in the following concentrations: 500, 350, 250, and 100 μg/mL. Benznidazole was used for positive control. The best results among the 92 samples evaluated were obtained with ethanol extracts of Ocotea paranapiacabensis (Am93) and Aegiphila lhotzkiana (Am160). Am93 showed trypanocidal activity against epimastigote forms of the Bolivia strain and was moderately toxic to LLCMK2 cells, its Selectivity Index (SI) being 14.56, while Am160 showed moderate trypanocidal activity against the Bolivia strain and moderate toxicicity, its SI being equal to 1.15. The screening of Brazilian plants has indicated the potential effect of ethanol extracts obtained from Ocotea paranapiacabensis and Aegiphila lhotzkiana against Chagas disease.223528533Bastos, J.K., Albuquerque, S., Silva, M.L.A., Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo (1999) Planta Med, 65, pp. 1-4Batista Jr., J.M., Lopes, A.A., Ambrósio, D.L., Regasini, L.O., Kato, M.J., Bolzani, V.S., Cicarelli, R.M., Furlan, M., Natural chromenes and chromene derivatives as potencial antitrypanosomal agents (2008) Biol Pharm Bull, 31, pp. 538-540Botsaris, A., Plants used traditionally to treat malaria in Brazil: The archives of Flora Medicinal (2007) J Ethnobiol Ethnomed, 1, p. 18Buainain, A., Giazzi, J.F., Belda Neto, F.M., Martini, A.S., Rosa, J.A., Pozetti, G.L., Estudo da atividade de extratos vegetais sobre o desenvolvimento de Trypanosoma cruzi em meio líquido de Warren (1992) Rev Cien Farm, 14, pp. 93-102Cabral, M.M., Barbosa-Filho, J.M., Maia, G.L., Chaves, M.C., Braga, M.V., de Souza, W., Neolignans from plants in northeastern Brazil (Lauraceae) with activity against (2010) Trypanosoma Cruzi. Exp Parasitol, 124, pp. 319-324Costa-Lotufo, L.V., Silveira, E.R., Barros, M.C., Lima, M.A., de Moraes, M.E., de Moraes, M.O., Pessoa, C., Antiproliferative effects of abietane diterpenes from aegiphilla lhotzkyana (2004) Planta Med, 70, pp. 180-182Cotinguiba, F., Regasini, L.O., Bolzani, V.S., Debonsi, H.M., Passerini, D.O., Cicarelli, R.M.B., Kato, M.J., Furlan, M., Piperamides and their derivatives as potential antitrypanosomal agents (2009) Med Chem Res, 18, pp. 703-711Coura, J.R., Castro, S.L., A critical review on Chagas disease chemotherapy (2002) Mem I Oswaldo Cruz, 97, pp. 3-24Coura, J.R., Present situation and new strategies for Chagas disease chemotherapy: A proposal (2009) Mem I Oswaldo Cruz, 104, pp. 549-554Fernandes, O., Souto, R.P., Castro, J.A., Pereira, J.B., Fernandes, N.C., Junqueira, A.C., Naiff, R.D., Coura, J.R., Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribosomal RNA sequences (1998) Am J Trop Med Hyg, 58, pp. 807-811Fournet, A., Ferreira, M.E., Rojas de Arias, A., Guy, I., Guinaudeau, H., Heinzen, H., Phytochemical and antiprotozoal activity of (2007) Ocotea Lancifolia. Fitoterapia, 78, pp. 382-384Lopes, A.A., López, S.N., Regasini, L.O., Batista, J.M., Ambrósio, D.L., Kato, M.J., da Silva, B.V., Furlan, M., In vitro activity of compounds isolated from Piper crassinervium against Trypanosoma cruzi (2008) Nat Prod Res, 22, pp. 1040-1046Macedo, A.M., Oliveira, R.P., Pena, S.D.J., Chagas disease: Role of parasite genetic variation in pathogenesis (2002) Exp Mol Med, 4, pp. 1-16Muelas-Serrano, S., Nogal-Ruiz, J.J., Gómez-Barrio, A., Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes (2000) Parasitol Res, 86, pp. 999-1002Nwaka, S., Ridley, R.G., Virtual drug discovery and development for neglected diseases through publicprivate partnerships (2003) Nat Rev Drug Discov, 2, pp. 919-928Osorio, E., Arango, G.J., Jiménez, N., Alzate, F., Ruiz, G., Gutiérrez, D., Paco, M.A., Robledo, S., Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae (2007) J Ethnopharmacol, 111, pp. 630-635Regasini, L.O., Cotinguiba, F., Passerini, G.D., Bolzani, V.S., Cicarelli, R.M.B., Kato, M.J., Furlan, M., Trypanocidal activity of Piper arboreum and Piper tuberculatum (Piperaceae) (2009) Rev Bras Farmacog, 19, pp. 199-203Saraiva, J., Vega, C., Rolon, M., da Silva, R., Silva, M.L., Donate, P.M., Bastos, J.K., de Albuquerque, S., In vitro and in vivo activity of lignan lactones derivatives against Trypanosoma cruzi (2007) Parasitol Res, 100, pp. 791-795Tibayrenc, M., Ayala, F.J., The clonal theory of parasitic protozoa: 12 years on (2002) Trends Parasitol, 18, pp. 405-410(2010), http://www.who.int/mediacentre/factsheets/fs340/en/index.html, World Health Organization 2010, accessed in Au

    Gingival fibromatosis: clinical, molecular and therapeutic issues

    Full text link

    Isolation of lignans glycosides from Alibertia sessilis (Vell.) K. Schum. (Rubiaceae) by preparative high-performance liquid chromatography

    No full text
    Enantiomeric aglycone lignans contained in a mixture were separated from a fraction of the extract of the stems of Alibertia sessilis (Vell.) K. Schum. (Rubiaceae) by preparative high-performance liquid chromatography. An efficient and fast separation can be achieved with methanol-water (30:70, v/v). Their structures were identified as (+)-lyoniresinol 3α-O-β-glucopyranoside and (-)-lyoniresinol 3α-O-β-glucopyranoside, being reported for the first time in Rubiaceae

    Cytochalasins Produced By Xylaria Sp., An Endophytic Fungus From Piper Aduncum [citocalasinas Produzidas Por Xylaria Sp., Um Fungo Endofítico De Piper Aduncum (piperaceae)]

    No full text
    A chemical study on the EtOAc extract produced by Xylaria sp., an endophytic fungus from Piper aduncum, resulted in the isolation of a new cytochalasin 1, along with five known 19,20-epoxycytochalasin D (2), C (3), N (4), Q (5), and R (6). The 1-6 were evaluated against the fungi C. cladosporioides and C. sphaerospermum and only 5 showed weak activity. The cytotoxicity in vitro against HeLA and CHO cells lines were investigated and the cytochalasins 2-4, and 6 showed a strong activity against HeLA. The DNAdamaging activity of 1-6 were also investigated against mutant strains of S. cerevisiae.331020382041Kongsaeree, P., Prabpai, S., Sriubolmas, N., Chanika, V., (2003) J. Nat. Prod., 66, p. 709Hawksworth, D.L., (2001) Mycol. Res., 105, p. 1422Melo, I.S., Azevedo, J.L., (1998) Ecologia Microbiana, p. 448. , Embrapa-CNPMA: JaguariúnaTan, R.X., Zou, W.X., (2001) Nat. Prod. Rep., 18, p. 448Diaz, P.P.D., Maldonaldo, E., Ospina, E., (1985) Rev. Latinoamer. Quím, 15, p. 136Macedo, J.C.B., Olviedo, S.G., (1987) Rev. Soc. Quím. Perú, 53, p. 228Orjala, J., Erdelmeier, C.A.J., Wright, A.D., Rali, T., Stiher, O., (1993) Planta. Medica, 59, p. 546Baldoqui, D.C., (2004) Tese de Doutorado, , Universidade Estadual Paulista, BrasilParmar, V.S., Jain, S.C., Bisht, K.S., Jain, R., Tneja, P., Jha, A., Tyagi, O.D., Boll, P.M., (1997) Phytochemistry, 47, p. 597Strobel, G., Daisy, B., Castillo, U., Harper, J., (2004) J. Nat. Prod., 67, p. 257Crews, P., Rodrigues, J., Jaspars, M., (1998) Organic Structure Analysis, p. 332. , Oxford University Press: New YorkFujii, Y., Tani, H., Ichinoe, M., Nakajima, H., (2000) J. Nat. Prod., 63, p. 132Espada, A., Rivera-Sagredo, A., De La Fuente, J.M., Hueso-Rodriguez, J.A., Elson, S.W., (1997) Tetrahedron., 53, p. 6485Rahalison, I.L., Hamburger, M., Hostettmann, K., Monod, M., Frenk, E., (1991) Phytochem. Anal., 2, p. 199Gunatilaka, A.A.L., Samaranayake, G., Kingston, D.G.I., Hofmann, G., Johnson, R.K.J., (1992) J. Nat. Prod., 55, p. 1648Mosmann, T., (1983) J. Immunol. Methods, 65, p. 55Maier, W., Hammer, U., Dammann, U., Schulz, B., Strack, D., (1997) Planta., 202, p. 36Cafêu, M.C., Silva, G.H., Teles, H.L., Bolzani, V.S., Araújo, A.R., Young, M.C.M., Pfenning, L.H., (2005) Quim. Nova, 28, p. 991Silva, G.H., Teles, H.L., Trevisan, H.C., Young, M.C.M., Pfenning, L.H., Eberlin, M.N., Haddad, R., Araujo, A.R., (2005) J. Braz. Chem. Soc., 16, p. 1463Silva, G.H., Teles, H.L., Zanardi, L.M., Young, M.C.M., Eberlin, M.N., Hadad, R., Pfenning, L.H., Araújo, A.R., (2006) Phytochemistry, 67, p. 1964Teles, H.L., Silva, G.H., Castro Gamboa, I., Bolzani, V.S., Pereira, J.O., Costa-Neto, C.M., Haddad, R., Araújo, A.R., (2005) Phytochemistry, 66, p. 2363Teles, H.L., Sordi, R., Silva, G.H., Castro-Gamboa, I., Bolzani, V.S., Pfenning, L.H., Costa-Neto, C.M., Araújo, A.R., (2006) Phytochemistry, 67, p. 268

    Antibacterial activity of alkyl gallates against Xanthomonas citri subsp. citri

    No full text
    The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a seriousdisease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread ofX. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). Thetreatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a commontarget involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. © 2013, American Society for Microbiology
    corecore