118 research outputs found

    Squelette homotopique 3D pour le traitement et l'analyse du ventricule gauche en SPECT

    Get PDF
    Des images tomoscintigraphiques sont la représentation 3D de la distribution d'un traceur dans le ventricule gauche (VG). Le but de notre étude est de réussir à quantifier les défauts de fixations (zones d'atténuation) représentatifs d'une pathologie. Le squelette 3D du VG est utilisé pour reconstituer la forme originale du VG. Pour combler les lacunes liées aux pathologies, le squelette est complété conformément à un modèle. Un algorithme fondé sur la théorie de l'incertain (logique floue) utilise le squelette ainsi complété pour générer une nouvelle image avec un contraste plus élevé. Cette nouvelle image peut être plus facilement segmentée, et le VG est considéré dans son intégralité. Le VG peut alors être entièrement quantifié

    Etk/Bmx Regulates Proteinase-Activated-Receptor1 (PAR1) in Breast Cancer Invasion: Signaling Partners, Hierarchy and Physiological Significance

    Get PDF
    BACKGROUND: While protease-activated-receptor 1 (PAR(1)) plays a central role in tumor progression, little is known about the cell signaling involved. METHODOLOGY/PRINCIPAL FINDINGS: We show here the impact of PAR(1) cellular activities using both an orthotopic mouse mammary xenograft and a colorectal-liver metastasis model in vivo, with biochemical analyses in vitro. Large and highly vascularized tumors were generated by cells over-expressing wt hPar1, Y397Z hPar1, with persistent signaling, or Y381A hPar1 mutant constructs. In contrast, cells over-expressing the truncated form of hPar1, which lacks the cytoplasmic tail, developed small or no tumors, similar to cells expressing empty vector or control untreated cells. Antibody array membranes revealed essential hPar1 partners including Etk/Bmx and Shc. PAR(1) activation induces Etk/Bmx and Shc binding to the receptor C-tail to form a complex. Y/A mutations in the PAR(1) C-tail did not prevent Shc-PAR(1) association, but enhanced the number of liver metastases compared with the already increased metastases obtained with wt hPar1. We found that Etk/Bmx first binds via the PH domain to a region of seven residues, located between C378-S384 in PAR(1) C-tail, enabling subsequent Shc association. Importantly, expression of the hPar1-7A mutant form (substituted A, residues 378-384), which is incapable of binding Etk/Bmx, resulted in inhibition of invasion through Matrigel-coated membranes. Similarly, knocking down Etk/Bmx inhibited PAR(1)-induced MDA-MB-435 cell migration. In addition, intact spheroid morphogenesis of MCF10A cells is markedly disrupted by the ectopic expression of wt hPar1. In contrast, the forced expression of the hPar1-7A mutant results in normal ball-shaped spheroids. Thus, by preventing binding of Etk/Bmx to PAR(1) -C-tail, hPar1 oncogenic properties are abrogated. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration that a cytoplasmic portion of the PAR(1) C-tail functions as a scaffold site. We identify here essential signaling partners, determine the hierarchy of binding and provide a platform for therapeutic vehicles via definition of the critical PAR(1)-associating region in the breast cancer signaling niche

    Ribonucleoprotein Particles Containing Non-Coding Y RNAs, Ro60, La and Nucleolin Are Not Required for Y RNA Function in DNA Replication

    Get PDF
    BACKGROUND: Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS: We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE: We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins

    Neurodevelopmental Disruption of Cortico-Striatal Function Caused by Degeneration of Habenula Neurons

    Get PDF
    The habenula plays an important role on cognitive and affective functions by regulating monoamines transmission such as the dopamine and serotonin, such that its dysfunction is thought to underlie a number of psychiatric conditions. Given that the monoamine systems are highly vulnerable to neurodevelopmental insults, damages in the habenula during early neurodevelopment may cause devastating effects on the wide-spread brain areas targeted by monoamine innervations.Using a battery of behavioral, anatomical, and biochemical assays, we examined the impacts of neonatal damage in the habenula on neurodevelopmental sequelae of the prefrontal cortex (PFC) and nucleus accumbens (NAcc) and associated behavioral deficits in rodents. Neonatal lesion of the medial and lateral habenula by ibotenic acid produced an assortment of behavioral manifestations consisting of hyper-locomotion, impulsivity, and attention deficit, with hyper-locomotion and impulsivity being observed only in the juvenile period, whereas attention deficit was sustained up until adulthood. Moreover, these behavioral alterations were also improved by amphetamine. Our study further revealed that impulsivity and attention deficit were associated with disruption of PFC volume and dopamine (DA) receptor expression, respectively. In contrast, hyper-locomotion was associated with decreased DA transporter expression in the NAcc. We also found that neonatal administration of nicotine into the habenula of neonatal brains produced selective lesion of the medial habenula. Behavioral deficits with neonatal nicotine administration were similar to those caused by ibotenic acid lesion of both medial and lateral habenula during the juvenile period, whereas they were different in adulthood.Because of similarity between behavioral and brain alterations caused by neonatal insults in the habenula and the symptoms and suggested neuropathology in attention deficit/hyperactivity disorder (ADHD), these results suggest that neurodevelopmental deficits in the habenula and the consequent cortico-striatal dysfunctions may be involved in the pathogenesis and pathophysiology of ADHD

    Identification and prioritization of critical success factors in faith-based and non-faith-based organizations’ humanitarian supply chain

    Get PDF
    In the last few decades, an exponential increase in the number of disasters, and their complexity has been reported, which ultimately put much pressure on relief organizations. These organizations cannot usually respond to the disaster on their own, and therefore, all actors involved in relief efforts should have end-to-end synchronization in order to provide relief effectively and efficiently. Consequently, to smoothen the flow of relief operation, a shared understanding of critical success factors in humanitarian supply chain serves as a pre-requisite for successful relief operation. Therefore, any member of the humanitarian supply chain might disrupt this synchronization by neglecting one or several of these critical success factors. However, in this study, we try to investigate how faith-based and non-faith-based relief organizations treat these critical success factors. Moreover, we also try to identify any differences between Islamic and Christian relief organizations in identifying and prioritizing these factors. To achieve the objective of this study, we used a two-stage approach; in the first stage, we collected the critical success factors from existing humanitarian literature. Whereas, in the second stage, using an online questionnaire, we collected data on the importance of selected factors from humanitarian relief organizations from around the world in collaboration with World Association of Non-Governmental Organizations (WANGO). Later, responses were analyzed to answer the research questions using non-parametric Binomial and Wilcoxon Rank-Sum tests. Test results indicate that for RQ1, two but all factors are significant for successful relief operation. For RQ2, we found significant differences for some CSF among faith-based and non-faith-based relief organizations. Similarly for RQ3, we found significant differences for some CSF among Islamic and Christian relief organizations

    Galectin-3 Facilitates Cell Motility in Gastric Cancer by Up-Regulating Protease-Activated Receptor-1(PAR-1) and Matrix Metalloproteinase-1(MMP-1)

    Get PDF
    BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1) PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a) galectin-3 silencing decreases the expression of PAR-1. b) galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c) galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d) galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e) Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f) Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis

    Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion

    Get PDF
    Background Stromal fibroblasts can contribute to tumor invasion through the release of matrix metalloproteinases (MMPs). Population studies have suggested that single nucleotide polymorphisms (SNPs) in MMP genes influence levels of expression and may be associated with breast cancer risk and with disease progression. This study directly examined the impact of MMP SNP genotype on the ability of host fibroblasts to promote tumor cell invasion. Methods Primary breast fibroblasts were isolated from patients with (n = 13) or without (n = 19) breast cancer, and their ability to promote breast cancer cell invasion was measured in in vitro invasion assays. Fibroblast invasion-promoting capacity (IPC) was analyzed in relation to donor type (tumor or non-tumor patient), MMP-1, MMP-3, and MMP-9 SNP genotype and MMP activity using independent samples t test and analysis of variance. All statistical tests were two-sided. Results Tumor-derived fibroblasts promoted higher levels of invasion than normal fibroblasts (p = 0.041). When IPC was related to genotype, higher levels of IPC were generated by tumor fibroblasts with the high-expressing MMP-3 5A/5A genotype compared with the 5A/6A and 6A/6A genotypes (p = 0.05 and 0.07, respectively), and this was associated with enhanced MMP-3 release. The functional importance of MMP-3 was demonstrated by enhanced invasion in the presence of recombinant MMP-3, whereas reduction occurred in the presence of a specific MMP-3 inhibitor. An inverse relationship was demonstrated between fibroblast IPC and the high-expressing MMP-1 genotype (p = 0.031), but no relationship was seen with MMP-9 SNP status. In contrast, normal fibroblasts showed no variation in IPC in relation to MMP genotype, with MMP-3 5A/5A fibroblasts exhibiting significantly lower levels of IPC than their tumor-derived counterparts (p = 0.04). Conclusion This study has shown that tumor-derived fibroblasts exhibit higher levels of IPC than normal fibroblasts and that the MMP-3 5A/5A genotype contributes to this through enhanced MMP-3 release. Despite a high-expressing genotype, normal fibroblasts do not exhibit higher IPC or enhanced MMP release. This suggests that more complex changes occur in tumor-derived fibroblasts, enabling full expression of the MMP SNP genotype and these possibly are epigenetic in nature. The results do suggest that, in women with breast cancer, a high-expressing MMP-3 genotype may promote tumor progression more effectively

    Emerging Roles of PAR-1 and PAFR in Melanoma Metastasis

    Get PDF
    Melanoma growth, angiogenesis and metastatic progression are strongly promoted by the inflammatory tumor microenvironment due to high levels of cytokine and chemokine secretion by the recruited inflammatory and stromal cells. In addition, platelets and molecular components of procoagulant pathways have been recently emerging as critical players of tumor growth and metastasis. In particular, thrombin, through the activity of its receptor protease-activated receptor-1 (PAR-1), regulates tumor cell adhesion to platelets and endothelial cells, stimulates tumor angiogenesis, and promotes tumor growth and metastasis. Notably, in many tumor types including melanoma, PAR-1 expression directly correlates with their metastatic phenotype and is directly responsible for the expression of interleukin-8, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor, platelet-derived growth factor, and integrins. Another proinflammatory receptor–ligand pair, platelet-activating factor (PAF) and its receptor (PAFR), have been shown to act as important modulators of tumor cell adhesion to endothelial cells, angiogenesis, tumor growth and metastasis. PAF is a bioactive lipid produced by a variety of cells from membrane glycerophospholipids in the same reaction that releases arachidonic acid, and can be secreted by platelets, inflammatory cells, keratinocytes and endothelial cells. We have demonstrated that in metastatic melanoma cells, PAF stimulates the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and activating transcription factor 1 (ATF-1), which results in overexpression of MMP-2 and membrane type 1-MMP (membrane type 1-MMP). Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that metastatic melanoma cells are better equipped than their non-metastatic counterparts to respond to PAF within the tumor microenvironment. The evidence supporting the hypothesis that the two G-protein coupled receptors, PAR-1 and PAFR, contribute to the acquisition of the metastatic phenotype of melanoma is presented and discussed

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision
    corecore