1,327 research outputs found

    Economics analysis of mitigation strategies for FMD introduction in highly concentrated animal feeding regions

    Get PDF
    Outbreaks of infectious animal diseases can lead to substantial losses as evidenced by 2003 US BSE (Bovine Spongiform Encephalopathy) event with consequent loss of export markets, and the 2001 UK FMD (Foot and Mouth Disease) outbreak that has cost estimates in the billions. In this paper we present a linked epidemiologic-economic modeling framework which is used to investigate several FMD mitigation strategies under the context of an FMD outbreak in a concentrated cattle feeding region in the US. In this study we extend the literature by investigating the economic effectiveness of some previously unaddressed strategies including early detection, enhanced vaccine availability, and enhanced surveillance under various combinations of slaughter, surveillance, and vaccination. We also consider different disease introduction points at a large feedlot, a backgrounder feedlot, a large grazing herd, and a backyard herd all in the Texas High Plains. In terms of disease mitigation strategies we evaluate the economic effectiveness of: 1. Speeding up initial detection by one week from day 14 to day 7 after initial infection; 2. Speeding up vaccine availability from one week post disease detection to the day of disease detection; 3.Doubling post event surveillance intensity. To examine the economic implications of these strategies we use a two component stochastic framework. The first component is the epidemiologic model that simulates the spread of FMD as affected by control policies and introduction scenarios. The second component is an economics module, which calculates an estimate of cattle industry losses plus the costs of implementing disease control. The results show that early detection of the disease is the most effective mechanism for minimizing the costs of outbreak. Under some circumstances enhanced surveillance also proved to be an effective strategy.Livestock Production/Industries,

    Bohmian trajectories for the half-line barrier

    Get PDF
    Bohmian trajectories are considered for a particle that is free (i.e. the potential energy is zero), except for a half-line barrier. On the barrier, both Dirichlet and Neumann boundary conditions are considered. The half-line barrier yields one of the simplest cases of diffraction. Using the exact time-dependent propagator found by Schulman, the trajectories are computed numerically for different initial Gaussian wave packets. In particular, it is found that different boundary conditions may lead to qualitatively different sets of trajectories. In the Dirichlet case, the particles tend to be more strongly repelled. The case of an incoming plane wave is also considered. The corresponding Bohmian trajectories are compared with the trajectories of an oil drop hopping on the surface of a vibrating bath

    W-exchange and W-annihilation processes of B mesons

    Full text link
    Using the PQCD method we calculate the W-exchange and the W-annihilation processes of B mesons, which in general involve a charm quark or anti-quark in the final state. The nonvanishing amplitudes of these processes are found to be suppressed by a factor of mc/mbm_c/m_b compared to the tree or the time-like penguin processes, but some of them are within the reach of observation at the future B-factories, and Bˉd0Ds+K\bar B_d^0 \to D^+_s K^- whose branching ratio is found to be 6.6×1066.6 \times 10^{-6} can be found even before the B-factory era. Comparisons with the results based on the BSW model are also given.Comment: 11 Pages including figures, accepted in Phys. Lett.

    The impact of seasonal variability in wildlife populations on the predicted spread of foot and mouth disease

    Get PDF
    Modeling potential disease spread in wildlife populations is important for predicting, responding to and recovering from a foreign animal disease incursion such as foot and mouth disease (FMD). We conducted a series of simulation experiments to determine how seasonal estimates of the spatial distribution of white-tailed deer impact the predicted magnitude and distribution of potential FMD outbreaks. Outbreaks were simulated in a study area comprising two distinct ecoregions in South Texas, USA, using a susceptible-latent-infectious-resistant geographic automata model (Sirca). Seasonal deer distributions were estimated by spatial autoregressive lag models and the normalized difference vegetation index. Significant (P < 0.0001) differences in both the median predicted number of deer infected and number of herds infected were found both between seasons and between ecoregions. Larger outbreaks occurred in winter within the higher deer-density ecoregion, whereas larger outbreaks occurred in summer and fall within the lower deer-density ecoregion. Results of this simulation study suggest that the outcome of an FMD incursion in a population of wildlife would depend on the density of the population infected and when during the year the incursion occurs. It is likely that such effects would be seen for FMD incursions in other regions and countries, and for other diseases, in cases in which a potential wildlife reservoir exists. Study findings indicate that the design of a mitigation strategy needs to take into account population and seasonal characteristics

    Bis(6-meth­oxy-2-{[tris­(hydroxy­meth­yl)­meth­yl]­imino­meth­yl}phenolato)­copper(II) dihydrate

    Get PDF
    In the title compound, [Cu(C12H16NO5)2]·2H2O, the CuII ion adopts a trans-CuN2O4 octa­hedral geometry arising from two N,O,O′-tridentate 6-meth­oxy-2-{[tris­(hydroxy­meth­yl)meth­yl]­imino­meth­yl}phenolate ligands. The Jahn–Teller distortion of the copper centre is unusally small. In the crystal structure, O—H⋯O hydrogen bonds, some of which are bifurcated, link the component species

    Bis{2-meth­oxy-6-[tris­(hydroxy­meth­yl)methyl­imino­meth­yl]phenolato-κ3 O,N,O′}manganese(II) dimethanol solvate hemihydrate

    Get PDF
    In the title complex, [Mn(C12H16NO5)2]·2CH3OH·0.5H2O, the MnII atom has a distorted octa­hedral coordination geometry in which two N atoms from two 6-meth­oxy-2-[tris­(hydroxy­meth­yl)methyl­imino­meth­yl]phenolate ligands adopt a trans arrangement. The Mn—O(H) bonds (mean length 2.134 Å) are significantly longer than the Mn—O and Mn—N bonds (mean length 2.011 and 2.027 Å, respectively), and the dihedral angle between the mean planes through the aromatic rings of the two ligands is 76.8 (1)°. A complex network of O—H⋯O hydrogen bonds is formed between the complexes and the uncoordinated methanol and water mol­ecules. The C and O atoms of one C—OH group are disordered with equal occupancies

    European Stroke Science Workshop

    Get PDF
    The European Stroke Organisation held its first European Stroke Science Workshop in Garmisch-Partenkirchen, Germany (December 15-17, 2011). Stroke experts based in Europe were invited to present and discuss their current research. The scope of the workshop was to review the most recent findings of selected topics in stroke, to exchange ideas, to stimulate new research, and to enhance collaboration between European stroke research groups. Seven scientific sessions were held, each starting with a keynote lecture to review the state of the art of the given topic, followed by 4 or 5 short presentations by experts. They were asked to limit their presentations to 10 slides containing only recent information. The meeting was organized by the executive committee of the European Stroke Organisation (Heinrich Mattle, chairman, Michael Brainin, Angel Chamorro, Werner Hacke, Didier Leys) and supported by the European Stroke Conference (Michael Hennerici). The following sections summarize the content of the workshop. Copyright (c) 2012 S. Karger AG, Base

    4-Methyl-3-nitro­benzaldehyde

    Get PDF
    In the crystal structure of the title compound, C8H7NO3, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonding

    Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    Full text link
    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known "magnetic flux problem" can in principle be resolved through non-ideal MHD effects. Two dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection, by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a filamentary inner accretion flow, more disordered than previously pictured. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by this magnetic interchange instability. How disks form in such an environment is unclear.Comment: 14 pages, 8 figures, submitted to Ap
    corecore