8 research outputs found

    Telomerase Efficiently Elongates Highly Transcribing Telomeres in Human Cancer Cells

    Get PDF
    RNA polymerase II transcribes the physical ends of linear eukaryotic chromosomes into a variety of long non-coding RNA molecules including telomeric repeat-containing RNA (TERRA). Since TERRA discovery, advances have been made in the characterization of TERRA biogenesis and regulation; on the contrary its associated functions remain elusive. Most of the biological roles so far proposed for TERRA are indeed based on in vitro experiments carried out using short TERRA-like RNA oligonucleotides. In particular, it has been suggested that TERRA inhibits telomerase activity. We have exploited two alternative cellular systems to test whether TERRA and/or telomere transcription influence telomerase-mediated telomere elongation in human cancer cells. In cells lacking the two DNA methyltransferases DNMT1 and DNMT3b, TERRA transcription and steady-state levels are greatly increased while telomerase is able to elongate telomeres normally. Similarly, telomerase can efficiently elongate transgenic inducible telomeres whose transcription has been experimentally augmented. Our data challenge the current hypothesis that TERRA functions as a general inhibitor of telomerase and suggest that telomere length homeostasis is maintained independently of TERRA and telomere transcription

    CpG-island promoters drive transcription of human telomeres

    No full text
    The longstanding dogma that telomeres, the heterochromatic extremities of linear eukaryotic chromosomes, are transcriptionally silent was overturned by the discovery that DNA-dependent RNA polymerase II (RNAPII) transcribes telomeric DNA into telomeric repeat-containing RNA (TERRA). Here, we show that CpG dinucleotide-rich DNA islands, shared among multiple human chromosome ends, promote transcription of TERRA molecules. TERRA promoters sustain cellular expression of reporter genes, are located immediately upstream of TERRA transcription start sites, and are bound by active RNAPII in vivo. Finally, the identified promoter CpG dinucleotides are methylated in vivo, and cytosine methylation negatively regulates TERRA abundance. The existence of subtelomeric promoters, driving TERRA transcription from independent chromosome ends, supports the idea that TERRA exerts fundamental functions in the context of telomere biology

    Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer

    No full text
    corecore