11 research outputs found

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Diversity Regularized Adversarial Deep Learning

    No full text
    Part 7: Deep Learning - Convolutional ANNInternational audienceThe two key players in Generative Adversarial Networks (GANs), the discriminator and generator, are usually parameterized as deep neural networks (DNNs). On many generative tasks, GANs achieve state-of-the-art performance but are often unstable to train and sometimes miss modes. A typical failure mode is the collapse of the generator to a single parameter configuration where its outputs are identical. When this collapse occurs, the gradient of the discriminator may point in similar directions for many similar points. We hypothesize that some of these shortcomings are in part due to primitive and redundant features extracted by discriminator and this can easily make the training stuck. We present a novel approach for regularizing adversarial models by enforcing diverse feature learning. In order to do this, both generator and discriminator are regularized by penalizing both negatively and positively correlated features according to their differentiation and based on their relative cosine distances. In addition to the gradient information from the adversarial loss made available by the discriminator, diversity regularization also ensures that a more stable gradient is provided to update both the generator and discriminator. Results indicate our regularizer enforces diverse features, stabilizes training, and improves image synthesis

    Evaluation of four proprietary toxin-binders in groundnut cake based broiler finishers’ diet

    No full text
    The relative efficacy of four proprietary toxin-binders and charcoal in groundnut cake based diets was investigated for broiler finishers’. Two hundred and seventy, 1- day Marshal Broiler chicks were all initially fed the same starter basal diet for 3 weeks. The birds were allotted to six groups of 45 birds and each treatment was in triplicate comprising of 15 birds per replicate. Six different finishers’ diets were formulated. Diet A (control) had no toxin binder while diets B, C, D, E and F had Charcoal, Toxiroak, Toxynil, MycofixR Eco and A-Tox incorporated respectively at 0.3%. At day-22, birds were allotted randomly to their respective experimental diets and were offered water ad libitum till day 42. Variations in average body weight gain of birds, feed and water consumption were significantly (p<0.05) influenced by dietary treatments. The feed conversion ratio values were 3.30, 2.96, 3.14, 3.08, 2.62 and 3.15 for birds on diets A, B, C, D, E and F respectively which was higher (p<0.05) for birds on basal (control) diet and lower for those on MycofixR Eco. The primal cuts (i.e. Drumsticks, Thighs, Breasts) and abdominal fats as percentages of the live weights compared to control were significantly (p<0.05) harnessed by the inclusion of toxin-binders. Effects of treatment on the values of red blood cell for birds on treatments B, C, D, E and F were similar (p>0.05). Heart weight was significantly (p<0.05) lower for birds on diet D (Toxynil). Commercial feeds toxin-binders used had variable potency and strength in detoxification as depicted by their differential effects on performance indices, carcass characteristics and blood profileKeywords: Broiler Performance, Proprietary toxin-binders, Carcass characteristics, Organ weights, Serum liver enzymes

    SeqClone: sequential Monte Carlo based inference of tumor subclones

    Get PDF
    Abstract Background Tumor samples are heterogeneous. They consist of varying cell populations or subclones and each subclone is characterized with a distinct single nucleotide variant (SNV) profile. This explains the source of genetic heterogeneity observed in tumor sequencing data. To make precise prognosis and design effective therapy for cancer, ascertaining the subclonal composition of a tumor is of great importance. Results In this paper, we propose a state-space formulation of the feature allocation model. This model is interpreted as the blind deconvolution of the expected variant allele fractions (VAFs). VAFs are deconvolved into a binary matrix of genotypes and a matrix of genotype proportions in the samples. Specifically, we consider a sequential construction of the genotype matrix which we model by Indian buffet process (IBP). We describe an efficient sequential Monte Carlo (SMC) algorithm, SeqClone, that jointly estimates the genotypes of subclones and their proportions in the samples. When compared to other methods for resolving tumor heterogeneity, SeqClone provides comparable and sometimes, better estimates of model parameters. By design, SeqClone conveniently handles any number of probed SNVs in the samples. In particular, we can analyze VAFs from newly probed SNVs to improve existing estimates, an attribute not present in existing solutions. Conclusions We show that the SMC algorithm for deconvolving VAFs from tumor sequencing data is a robust and promising alternative for explaining the observed genetic heterogeneity in tumor samples
    corecore