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Abstract

Background: Tumor samples are heterogeneous. They consist of varying cell populations or subclones and each
subclone is characterized with a distinct single nucleotide variant (SNV) profile. This explains the source of genetic
heterogeneity observed in tumor sequencing data. To make precise prognosis and design effective therapy for
cancer, ascertaining the subclonal composition of a tumor is of great importance.

Results: In this paper, we propose a state-space formulation of the feature allocation model. This model is
interpreted as the blind deconvolution of the expected variant allele fractions (VAFs). VAFs are deconvolved into a
binary matrix of genotypes and a matrix of genotype proportions in the samples. Specifically, we consider a sequential
construction of the genotype matrix which we model by Indian buffet process (IBP). We describe an efficient
sequential Monte Carlo (SMC) algorithm, SeqClone, that jointly estimates the genotypes of subclones and their
proportions in the samples. When compared to other methods for resolving tumor heterogeneity, SeqClone provides
comparable and sometimes, better estimates of model parameters. By design, SeqClone conveniently handles any
number of probed SNVs in the samples. In particular, we can analyze VAFs from newly probed SNVs to improve
existing estimates, an attribute not present in existing solutions.

Conclusions: We show that the SMC algorithm for deconvolving VAFs from tumor sequencing data is a robust and
promising alternative for explaining the observed genetic heterogeneity in tumor samples.
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Background
Tumor samples that are obtained temporally or spatially
from a cancer patient are heterogeneous in nature [1, 2].
These samples contain genetically diverse sub-population
of cells often referred to as tumor subclones [1, 3, 4].
Each subclone harbors a distinct mutational profile that
uniquely characterizes the genome of the cells in that
particular subclone [5–7]. Mutational and evolutionary
processes that drive tumor progression are partly respon-
sible for the observed genetic differences that distinguish
these subclones. For instance, somatic variations among
the subclones are as a result of mutations that are acquired
by chance in the cell during tumor progression [8, 9].
The advancements in high-throughput sequencing

technologies over the last decade [1, 10] have put a search-
light on studies that are related to tumor heterogeneity.
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For instance, some methods concentrate on probing indi-
vidual cell using fluorescent markers [11, 12] while others
employ single cell sequencing [13–16]. However, these
approaches have their downsides. As an example, the
use of single cell sequencing to probe large number of
cells remains too expensive. On the other hand, methods
like whole genome sequencing (WGS) and whole exome
sequencing (WES) of tumor samples allow for proper and
adequate quantificationof somaticmutations in the cells [17].
One way to resolve tumor heterogeneity is to computa-

tionally characterize and identify the tumor subclones in
the samples, employing the datasets fromWGS andWES.
Generally, computional approach at resolving tumor het-
erogeneity is a very challenging task [18]. It involves an
estimation of the distinct single nucleotide variant (SNV)
profiles/genotypes and their respective proportions in
the samples. The result from such task assists in the
design of effective therapy in combating cancer, aids corr
ect cancer prognosis [19] and minimizes chemotherapy
resistance [20].
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In the literature, various computational methods have
been proposed to resolve tumor heterogeneity [18]. Most
prominent among these methods model the SNV pro-
files/genotypes of subclones with a binary matrix. Each
row of the genotype matrix corresponds to a locus/SNV
and each column represents the SNV profile of a subclone.
Further, computational approach can be viewed as either
an indirect or a direct estimation problem, depending on
how the genotype matrix is obtained. In the former, geno-
types of subclones in the tumor samples are not directly
inferred. Rathermutations with similar cellular prevalence
are first grouped as mutation clusters. As a result, further
analyses are often required in order to obtain the geno-
types/SNV profiles of tumor subclones in the samples
[21–25].
The direct approach employs the feature allocation

model for the decomposition of the observed variant
allele fractions (VAFs) into matrices of genotypes (Z)
and proportions (W) [26–29]. In addition to the VAF
dataset, some methods include copy number informa-
tion in the analysis of tumor heterogeneity [24]. These
methods simultaneously model the copy number varia-
tion and SNV datasets. A host of methods under the
direct approach assume a fixed number of subclones, and
model the genotypes of subclones with a binary matrix.
Each column of thematrix corresponds to the SNV profile
of a subclone: 0 and 1 denoting the absence and pres-
ence of a particular SNV in a subclone [26, 27]. However,
in reality, the exact number of subclones is not known
prior to the analysis of the samples. To estimate model
parameters of the feature allocation model, [27] pro-
posed an expectation-maximization (EM) algorithm [30]
that returns point estimates of model parameters. Markov
chain Monte Carlo (MCMC) [31, 32], which has been the
gold standard algorithm in the literature [21, 24, 26, 28],
returns point estimates and variabilities of model param-
eters. As noted in [26, 28], when the number of SNVs is
large, MCMC algorithm is plagued with computational
issues. With EM and MCMC algorithms, whenever more
VAFs are available from newly called SNV(s), there is
no provision for improvement of the existing parameter
estimates with the new datasets.
In this paper, we propose a state-space formulation of

the feature allocation modeling framework. Our work
also describes a sequential Monte Carlo (SMC) algorithm
[33, 34] for inferring all the unknown model parame-
ters that explain tumor heterogeneity. These parameters
include the binary matrix of genotypes and the propor-
tions of tumor subclones in the samples. In particular,
our state-space formulation considers the sequential con-
struction of the binary genotype matrix by making use
of Indian buffet process (IBP) [35–37]. IBP describes the
prior distribution of a binary matrix with a fixed num-
ber of rows and an unknown number of columns. Other

parameters of the feature allocation model, including the
proportions of tumor subclones, are considered as the
parameters of our state-space model. The observed VAF,
which is the input data, is processed rowwise: this enables
scalability to any number of rows. In the SMC framework,
observed measurements are processed one at a time. At
every instance of time, the posterior probability density
function (PDF) of the state at that time is computed
via approximation [38–41]. With extensive simulation,
we compare SeqClone with other computational meth-
ods for resolving tumor heterogeneity. Overall, in terms
of accuracy of the estimates of model parameters, Seq-
Clone demonstrates comparable and sometimes superior
performance to other methods.
The remainder of this paper is organized as fol-

lows. In the “Results” section, we investigate the perfor-
mance of SeqClone, using simulated datasets and chronic
lymphocytic leukemia (CLL) datasets, the real tumor
samples obtained from three patients in [42]. In the
“Discussion” section, we discuss the results obtained
from the proposed algorithm. “Conclusions” section con-
cludes the paper. Finally, the “Method” section details the
description of system model and problem formulation.

Results
In this section, we report the performance of the pro-
posed algorithm using simulated and real tumor datasets.
We compared model estimates, matrices of genotypes
and proportions, from the proposed algorithm to those
obtained from other similar algorithms. In real tumor
datasets, similar to the manual approach considered in
[27], we hypothesized phylogenetic trees from the esti-
mated matrix of genotypes. Particularly, we assumed that
the set of mutations that are grouped together in a tumor
subclone comprises of: all the mutations that belong to
its ancestors on the tree and the mutations on the edge
that connect the subclone to its parent subclone. With
this simple rule, we were able to construct the possible
phylogenetic trees that are consistent with the estimated
matrix of genotypes. For the simulation experiments, we
employed a reverse of the above rule to generate binary
genotype matrices from phylogenetic trees. Finally, we
compared the runtimes of the different algorithms for
subclone inference.

Simulated datasets
We generated datasets for average sequencing depth
r ∈ {50, 200, 1000} per locus, number of tumor
subclones C ∈ {3, 4, 5}, number of tumor samples
S ∈ {3, 4, ..., 10} and number of genomic loci T ∈
{20, 40, 60, 80, 100, 5000}. For a given number of tumor
subclones C and number of genomic loci T, we simu-
lated a phylogenetic tree from where the genotype matrix
Z is obtained. For the phylogenetic tree simulation, we
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Table 1 Genotype error (eZ ) and proportion error (eW ) computed for SeqClone, Clomial, BayClone and Cloe for T = 20, C = 3, S = 5
and r ∈ {50, 200, 1000}

SeqClone Clomial BayClone Cloe

r eZ eW eZ eW eZ eW eZ eW

50 0.035 (0.005) 0.053 (0.005) 0.040 (0.005) 0.071 (0.005) 0.080 (0.007) 0.059 (0.006) 0.065 (0.005) 0.064 (0.008)

200 0.012 (0.002) 0.022 (0.002) 0.025 (0.004) 0.046 (0.007) 0.075 (0.009) 0.062 (0.008) 0.060 (0.006) 0.052 (0.003)

1000 0.002 (0.001) 0.019 (0.002) 0.020 (0.002) 0.039 (0.004) 0.060 (0.004) 0.038 (0.005) 0.065 (0.004) 0.037 (0.004)

grouped the T mutations into C subclones uniformly at
random. The mutations in each subclone are assumed to
first appear in that particular subclone on the tree. One
of the subclones is randomly selected as the root node
and the rest C − 1 subclones are iteratively connected to
the tree. Specifically, an unattached subclone (child) and
a parent subclone on the tree are randomly selected. The
child subclone is attached to the parent subclone and the
new set of mutations in the child subclone is a union of
the mutations in the parent and the mutations in the child
subclone. The mutational profiles of the subclones are the
columns of the genotype matrix Z.
Given the genotype matrix, along with specific values of

r and S, we generated the input data to the proposed algo-
rithm, i.e., the matrices of variant count Y and total count
V. We generated each entry of V, i.e., vts from Pois(r).
We generated each entry of Y, i.e., yts as follows: sampled
each column of the proportion matrix W independently
from Dir([ a0, a1, ..., a4] ) (a0 = 0.2 and ac, c ∈ {1, ..., 4}
randomly chosen from the set {2, 4, 5, 6, 7, 8}), defined
p = 0.02, computed pts following (2) in the
“Method” section, and sampled yts from binomial(vts, pts).
The proposed algorithm, Clomial [27], BayClone [28],

and Cloe [26] were run on the simulated datasets. We
defined the following metrics to quantify the estima-
tion strength of the algorithms: genotype error (eZ), pro-
portion error (eW ) and success probabilities error (epts ).
Mathematically, these errors are defined as

eZ = 1
TC

T∑

t=1

C∑

c=1

∣∣ẑtc−ztc
∣∣ , eW = 1

CS

C∑

c=0

S∑

s=1

∣∣ŵcs − wcs
∣∣ ,

and

epts =
1
TS

T∑

t=1

S∑

s=1

∣∣p̂ts−pts
∣∣ , where p̂ts= p̂ŵ0s+

C∑

c=1
ẑtcŵcs.

The problem of estimating genotype matrix and pro-
portions matrix is a blind decomposition problem. This
implies that after the analysis, we are unaware of the
columns of the estimated genotype matrix that corre-
spond to the columns of the true genotype matrix. We
resolved this by computing the genotype error with every
permutation of the columns of the estimated genotype
matrix. We selected the permutation that resulted in the
smallest error and we used the selected genotype in com-
puting the other error values. All experiments were per-
formed on Intel(R) Xeon(R) CPU @ 3.5GHz and a 24GB
of RAM running a 64-bit Windows 7.
In Tables 1, 2, 3 and 4 and Figs. 1, 2, 3, 4, 5, 6 and 7,

we present the results obtained from analyses of simu-
lated datasets. To compare the methods, we generated
20 datasets for every combination of number of genomic
loci T, number of tumor subclones C, number of tumor
samples S and average sequencing depth r. We com-
puted the average and standard deviation of genotype
error eZ and proportion error eW over all the 20 datasets.
In Table 1, we present the average and standard devi-
ation (in round parentheses) of the genotype and the
proportion errors for all the methods when the number
of loci T = 20, number of subclones C = 3, num-
ber of samples S = 5 and average sequencing depth
r ∈ {50, 200, 1000}. We excluded success probabilities
error (epts ) because not all the algorithms return an esti-
mate of p in (2) (“Method” section). Similarly, in Table 2,
we show, for all the methods, the average and the stan-
dard deviation of genotype and proportion errors when
T = 100, C = 3, S = 5 and r ∈ {50, 200, 1000}. The pro-
posed algorithm demonstrates a comparable and some-
times, superior performance in terms of the accuracy of
the estimated genotype and proportionmatrices. It should
be noted that, for BayClone, the ones in the true binary

Table 2 Genotype error (eZ ) and proportion error (eW ) computed for SeqClone, Clomial, BayClone and Cloe for T = 100, C = 3, S = 5
and r ∈ {50, 200, 1000}

SeqClone Clomial BayClone Cloe

r eZ eW eZ eW eZ eW eZ eW

50 0.030 (0.004) 0.023 (0.003) 0.055 (0.007) 0.094 (0.006) 0.078 (0.007) 0.059 (0.006) 0.041 (0.005) 0.064 (0.008)

200 0.015 (0.003) 0.014 (0.001) 0.050 (0.006) 0.050 (0.006) 0.080 (0.006) 0.061 (0.006) 0.080 (0.005) 0.081 (0.004)

1000 0.004 (0.001) 0.011 (0.001) 0.045 (0.004) 0.051 (0.005) 0.070 (0.006) 0.055 (0.005) 0.070 (0.005) 0.066 (0.005)
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Table 3 Average and standard deviation of epts , eZ and eW for
T ∈ {100, 5000}, S = 5, C = 3, and r = 1000

eZ eW epts

100 0.002 [0.000] 0.010 [0.002] 0.014 [0.001]

5000 0.002 [0.001] 0.004 [0.001] 0.009 [0.002]

Average and standard deviation are taken of 20 datasets

genotype matrices were changed to 0.5 before the simu-
lation and the entries of the estimated genotype matrices
greater than 0 were changed to ones before computing the
errors.
In Figs. 1, 2, 3, 4, 5 and 6, for SeqClone, we present

the errorbar plots for the average and standard devia-
tion over 20 datasets for different combinations of the
number of loci, sample size, number of subclones and
average sequencing depth. The standard deviation is
the vertical line above and below the average value in
the errorbar plots. Figures 1, 2 and 3 show how the
errors vary across different sample sizes for different
subclones. There is an improvement, for all the sub-
clones, in the estimates of all model parameters when
the number of tumor samples increases. Similarly, in
Figs. 4, 5 and 6, estimates of model parameters improves
when the average sequencing depth increases. In the
first row in Table 3, we present, for SeqClone, the
result of the permutations of rows of the input data.
For the dataset with T = 100,C = 3, r = 1000
and S = 5, we ran SeqClone with randomly selected
100 permutations of the rows of the input data matri-
ces and we computed the average and standard devi-
ation of the errors (row one in Table 3). In row
two in Table 3, we present results for higher num-
ber of genomic loci. In particular, we present the aver-
age and standard deviation of errors over 20 runs for
the datasets with T = 5000, C = 3, r = 1000
and S = 5.
Lastly, we present the runtimes and memory consump-

tion for all the methods when performing a section of the
experiments in Table 1. For the proposed algorithm, we
ran the algorithm 20 times with 1000 particles. For the
MCMC-based algorithms (Cloe and BayClone), we ran
30,000 chains. For Clomial, we ran 2000 iterations. The
runtimes for all the methods on a 3.5Ghz Intel 8 cores

Table 4 Runtimes, eZ and eW for T = 20, S = 5, C = 3, and
r = 1000

Error SeqClone Clomial BayClone Cloe

55 min 53 min 93 min 101 min

eZ 0.005 0.015 0.050 0.060

eW 0.018 0.034 0.036 0.035

running MATLAB and the associated genotype and pro-
portion errors for the dataset from T = 20, C = 3,
r = 1000, and S = 5 are in Table 4. In addition, for this
particular dataset, we report the estimated sample mean
and sample standard deviation of the relative frequency
of variant reads that are produced as error (parameter p
in “Method” section) from SeqClone and BayClone. For
SeqClone, the mean is 0.019 and the standard deviation
is 0.0012. Likewise, for BayClone, the mean is 0.022 and
the standard deviation is 0.0011. In Fig. 7, we present
the memory consumption by all the algorithms for dif-
ferent genomic loci (T ∈ {20, 40, 60, 80, 100}). In general,
Clomial is the most memory efficient of all the algorithms.
However, SeqClone consumes lesser memory when com-
pared to BayClone and Cloe.

Real biological tumor samples
Next, we present the results obtained from applying the
proposed algorithm to real biological tumor datasets. Par-
ticularly, we analyzed the datasets of three patients with
B-cell CLL namely: CLL077, CLL006, and CLL003 [42].
Complete datasets and the data pre-processing steps are
in [42]. In Additional file 1, we include the analysis results
with Clomial, BayClone and Cloe.

CLL077:
Here, we present the results obtained from analyzing the
dataset from patient CLL077 with SeqClone. This dataset
had 16 distinct loci probed for tumor heterogeneity.
These are shown in the first row in Table 5. We present
our analysis results in the main paper, and the estimates
for other methods in Additional file 1. In concordance
with other methods, SeqClone estimated 4 subclones as
shown in Table 5, and also produced SNV profiles that
are similar to those obtained from the three other meth-
ods. Also, the proportions of tumor subclones exhibit
similar trend in all the 5 tumor samples across various
methods. For instance, the abundance of sublone 1 in
sample ‘a’ in Clomial, BayClone, Cloe and SeqClone are
0.27, 0.21, 0.16 and 0.27, respectively. This trend contin-
ues in all other samples except in sample ‘e’ where Clomial
deviates from this normal trend, i.e., Clomial, BayClone,
Cloe and SeqClone are 0.43, 0.07, 0.03, and 0.16, respec-
tively. On this dataset, SeqClone produced a consistent
result with other methods in estimating the SNV pro-
files of subclones and their proportions in all the samples
(Tables 5, 6 and in Additional file 1). The constructed
phylogenetic tree from the SNV profiles for CLL077 is
shown Fig. 8.

CLL006:
This dataset comprises of 11 genomic loci. These are
shown in the first row in Table 7. We analyzed the
dataset with SeqClone, and the estimates of genotype and
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Fig. 1 Plot of genotype error eZ versus sample size S for T = 20 loci, average sequencing depth r = 1000 and C ∈ {3, 4, 5} subclones

proportions matrices are in Tables 7 and 8. The con-
structed phylogenetic tree is shown Fig. 9. SeqClone and
BayClone estimated 5 distinct subclones, Clomial had
4 subclones and Cloe recovered 6 subclones. Details of
the estimates from Clomial, BayClone and Cloe are in
Additional file 1.

CLL003:
The dataset from patient CLL003 has 20 distinct genomic
loci. This is shown in the first row in Table 9. In this

dataset, Clomial and Cloe produced 2 distinct subclones
with considerably high proportions in the samples and 2
others with very small proportions across all samples. Seq-
Clone and BayClone estimated the first 2 major subclones
that dominate the 5 samples with proportions shown in
Table 10 (and Additional file 1: Table S6). The constructed
phylogenetic tree for CLL003 is shown in Fig. 10.
Finally, we investigated the behavior of the algorithms

in terms of runtime and memory consumption, when
applied to simulated and real datasets of similar size:
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Fig. 2 Plot of proportion error eW versus sample size S for T = 20 loci, average sequencing depth r = 1000 and C ∈ {3, 4, 5} subclones



Ogundijo and Wang BMC Bioinformatics            (2019) 20:6 Page 6 of 15

2 3 4 5 6 7 8 9 10 11

Number of samples (S)

0

0.01

0.02

0.03

0.04

0.05

0.06

S
uc

ce
ss

 p
ro

ba
bi

lit
y 

er
ro

r 
(e

p
ts

)

C = 3 subclones
C = 4 subclones
C = 5 subclones

Fig. 3 Plot of the error of success probability epts versus sample size S for T = 20 loci, average sequencing depth r = 1000 and C ∈ {3, 4, 5} subclones

T = 20 and S = 5. We present the results in Table 11.
Runtimes (without parentheses) are in minutes and the
consumed memory (in round parentheses) are in MB.

Discussion
Tumor heterogeneity describes a situation where bulk
tumor samples have numerous subpopulations of cancer
cells and each subpopulation has unique features that dis-
tinguish it from other subpopulations in the samples. It

has been recognized as the major cause of relapse in can-
cer patients. One way to resolve tumor heterogeneity is
by deconvolving the VAFs data from the next-generation
sequencing to the genotypes and the proportions of sub-
populations of cancer cells in the samples. In this paper,
to resolve tumor heterogeneity, we interpreted the VAFs
data using the feature allocation model [27, 28].
We developed the feature allocation model into a state-

space framework so that VAFs with large number of
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Fig. 4 Plot of genotype error eZ versus sample size S for T = 20 loci, C = 3 subclones and average sequencing depth r ∈ {50, 200, 1000}
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Fig. 5 Plot of proportion error eW versus sample size S for T = 20 loci, C = 3 subclones and average sequencing depth r ∈ {50, 200, 1000}

genomic loci can be adequately modeled. We proposed a
sequential algorithm, SeqClone, to infer all the parameters
of our state-state model. The inferred parameters, which
describe tumor heterogeneity, include: the genotypes of
all the genomic loci in every subpopulation and their
respective proportions in the tumor samples. With the
state-space modeling framework and the sequential algo-
rithm, computational problem that is often encountered
by other methods for interpreting tumor heterogneity in
the presence of large genomic loci is eliminated [26, 28].

It should be noted that, in this work, like some previous
methods [27, 43], only somatic SNVs/mutations are mod-
eled and we assume that these mutations are unaffected
by copy number aberrations or rearrangements in the can-
cer genome.With this modeling assumption, extreme care
must be taken when using SeqClone to interpret tumor
heterogeneity.
In the “Results” section, we presented the results from

running SeqClone and three other algorithms: Clomial,
BayClone and Cloe, on simulated and real cancer datasets.
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For the simulation experiments, we generated several sim-
ulated datasets and compared the results from all the
algorithms. SeqClone produced comparable, and some-
times better performance in the estimation of model
parameters. On the real cancer datasets ([42]), SeqClone
produced satisfying results that are comparable to other
methods.
Also, because of the sequential nature by which the

VAFs are processed by SeqClone, VAFs from previ-
ously unprobed genomic loci can be analyzed to improve
the existing results, a feature that is absent in other
algorithms.

Conclusions
Finally, we have demonstrated the efficacy of sequential
Monte Carlo algorithm in the analysis of VAFs datasets
that are obtained from heterogeneous tumor samples. The
proposed method does not assume that the number of
subclones is known/fixed prior to analysis and this allows
the ‘correct’ number of subclones to be estimated from the
tumor samples. Also, because of the sequential nature by
which the proposed algorithm handles the VAFs datasets,

the analysis can easily be scaled to a very large dataset.
In addition, the current framework can be extended to a
more general case that involves the estimation of muta-
tion and the copy number profiles of the tumor subclones
that are present in the tumor samples.

Method
Systemmodel and problem formulation
Before going to the details of our modeling approach,
we define all the mathematical notations that are used
in this paper. p(·) denotes a PDF, p(·|·) denotes a
conditional PDF, P(·) denotes a probability mass func-
tion (PMF) and P(·|·) denotes a conditional PMF. Like-
wise, binomial(n, p) denotes a binomial distribution with
n exact number of trials and p probability of suc-
cess at each trial. Bern(p) denotes a Bernoulli distribu-
tion with success probability p and N

(
μ, σ 2) denotes

a univariate Gaussian distribution with mean μ and
variance σ 2. Also, gamma(α0,β0) denotes a gamma dis-
tribution (α0 is the shape parameter and β0 is the
rate parameter) and beta(α1,β1) denotes a beta dis-
tribution where α1 and β1 are the shape parameters.

Table 5 CLL077: estimate of genotype matrix/mutational profile

Gene BCL2L13 COL24A1 DAZAP1 EXOC6B GHDC GPR158 HMCN1 KLHDC2 LRRC16A MAP2K1 NAMPT NOD1 OCA2 PLA2G16 SAMHD1 SLC12A1

C1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1

C2 1 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1

C3 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1

C4 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1
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Table 6 CLL077: estimate of the proportions of subclones in the
samples

Subclone a b c d e

C0 0.00 0.00 0.00 0.05 0.35

C1 0.27 0.15 0.14 0.18 0.16

C2 0.02 0.04 0.05 0.13 0.28

C3 0.35 0.29 0.41 0.30 0.12

C4 0.36 0.52 0.40 0.34 0.09

Pois(λ) denotes a Poisson distribution with mean
parameter λ and Dir(α) denotes a Dirichlet distribution
with a vector of concentration parameters α. Lastly, �(·)
denotes the gamma function and x̂ denotes the estimate
of variable x.
Two important quantities that are obtained from WGS

andWES of tumor samples are the variant count and total
count at each of the probed genomic locus. We denote
the matrix of variant count by Y and the matrix of total
count by V. Each of the matrices has a dimension T × S,
where T is the number of genomic loci/SNVs and S is the
total number of tumor samples. We denote the number of
reads that bear the variant count at locus t in sample s as
yts. Likewise, we denote the total number of reads at locus
t in sample s as vts. In our formulation, we assume that

the genomic loci are unaffected by copy number aberra-
tions or rearrangement of the cancer genome [27, 43]. We
employ the binomial sampling model [27, 28] in modeling
the input data matrices, given as

yts
ind.∼ binomial (vts, pts) , t = 1, ...,T , s = 1, ..., S, (1)

pts, t = 1, ...,T , s = 1, ..., S are the success probabilities
defined as [28]

pts = w0sp + 1
2

C∑

c=1
ztcwcs, (2)

where ztc, a binary variable, represents the two possible
states of an allelic genotype at locus t in subclone c and C
represents the number of tumor subclones, an unknown
variable. Under this framework, if ztc = 1, it implies that
locus t in subclone c has reads that bear variant sequence.
Likewise, if ztc = 0, there are no reads that bear vari-
ant sequence at that locus. We assume that if a mutation
is present in a particular subclone, then at that genomic
locus, the subclone is heterozygous with copy number
equal to one.
The term

∑C
c=1 ztcwcs in (2) defines pts as a weighted

sum of effects of an unknown number of subclones in the
tumor samples. Also, effects of experimental and data pro-
cessing noises are captured by w0sp in (2). In particular, p

Fig. 8 Phylogenetic tree from CLL077
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Table 7 CLL006: estimate of genotype matrix/mutational profile

Gene ARHGAP29 EGFR IRF4 KIAA0182 KIAA0319L KLHL4 MED12 PILRB RBPJ SIK1 U2AF1

C1 1 1 1 1 1 1 1 1 1 1 1

C2 1 1 0 1 0 1 1 1 0 1 1

C3 1 1 0 1 0 1 1 1 0 1 0

C4 1 1 0 1 1 1 1 1 0 1 1

C5 1 1 1 1 1 1 1 1 0 1 1

is the relative frequency of variant reads that are generated
as a result of error during upstream data analysis [28]. For
t = 1, ...,T , s = 1, ..., S, we can write (2) as

Pts = Z′ · W, (3)

with Z′ = [
p 1

2Z
]
. Pts is a T × S matrix of success proba-

bilities,Z is a T×C binary matrix and p is a column vector
with all its elements equal to p.
Each column of matrix Z represents the SNV profile

of a tumor subclone and each column of matrix W rep-
resents the proportions of subclones in a sample. Thus,
Z, W, C and p explain the inherent heterogeneity in the
tumor samples. We perform a joint inference on all these
variables by formulating the systemmodel in a state-space
framework and then derive an SMC algorithm to infer all
the model parameters.

State-space formulation
Here, we describe the state transition and the observa-
tion models of our state-space formulation of the feature
allocation model (solution to (3)). Before going through
the details of our formulation, we will briefly describe
the prior distribution on a left-ordered binary matrix Z
that has a finite number of rows and an unknown num-
ber of columns [35, 36]. By left-ordered, we mean that the
columns of the binarymatrix are ordered from left to right
according to the magnitude of the binary in the columns

Table 8 CLL006: estimate of the proportions of subclones in the
samples

Subclone a b c d e

C0 0.00 0.00 0.00 0.00 0.00

C1 0.10 0.19 0.07 0.19 0.21

C2 0.41 0.09 0.19 0.18 0.17

C3 0.23 0.24 0.30 0.16 0.08

C4 0.09 0.21 0.19 0.17 0.27

C5 0.17 0.27 0.25 0.30 0.27

and the first row is considered the most significant.
Mathematically, the distribution is expressed as

P(Z) = αC+
∏2T−1

h=1 Ch!
exp {−αHT }

C+∏

c=1

(T − mc) ! (mc − 1) !
T !

,

(4)

wheremc represents the number of non-zero entries in the
cth column of matrix Z, T represents the finite number of
rows in matrix Z, C+ represents the number of columns
in matrix Z that do not sum to zero. HT = ∑T

t=1 1/t rep-
resents the Tth harmonic number and Ch represents the
number of columns in matrix Z that form a sequence of
ones and zeros corresponding to the binary representation
of the number h when read top-to-bottom.
Fortunately, the prior distribution described in (4) can

be viewed as the outcome of IBP, a sequential generative
process for the binary matrix. Given that in an Indian buf-
fet restaurant, we have T customers who come into the
restaurant one after the other. Assume that the first cus-
tomer comes into the restaurant and fills her plate from
the first c1 = Pois(α) distinct dishes. Then the tth cus-
tomer chooses a particular dish with probability mc/t, mc
being the number of people that have chosen the cth dish
before her, and in addition, she adds Pois(α/t) new dishes.
Following the dish serving rule, if we record the choices
of the T customers on the different dishes as a binary
matrix such that an entry is one if the customer chose the
dish and zero otherwise, such a matrix is a draw from the
distribution in (4) [36]. The IBP process is a sequential
process in such a way that the choices of the tth customer
are only dependent on the customers that were in the
restaurant before her.
In our state-space framework, we designate tumor sub-

clones as the dishes, the genomic loci as the customers and
the tth customer as the observation at time t (tth row of the
input data). We write zt = [zt1, zt2, ..., ztC], the tth row of
Z as the state at time t. Thus, according to the sequential
process described by the IBP, our state transition model is
written as
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P (zt|Zt−1,α) , (5)

where Zt−1 represents a binary sub-matrix of the top
t − 1 rows in Z. We present the algorithm to draw a
sample from (5) in Algorithm 1. In the algorithm, Zt is
obtained from Zt−1 and if in the process, additional non-
zero column(s) is/are created in Zt , i.e., Pois(α/t) > 0,
then additional row(s) will also be added to matrix W.
We re-parameterize matrix W to easily accommodate
any possible change in its dimension by writing wcs =
θcs/

∑C
c′=0 θc′s. In other word, we estimate θcs instead of

wcs and we compute wcs from the estimates of θcs.

Algorithm 1 Sample P(zt|Zt−1,α) with IBP
1: Z ← Zt−1
2: if t = 1 then
3: Sample Cnew

t ∼ Pois(α).
4: Sample zt,1:Cnew

t
← 1.

5: else
6: C+ ← Number of non-zero columns in Z
7: for c = 1, ...,C+ do
8: m−t,c ← number of 1′s in column c in Z.
9: Sample zt,c according to P(zt,c = 1) ∼

Bern
(m−t,c

t

)
,

10: end for
11: Sample Cnew

t ∼ Pois
(α

t

)
.

12: zt,(C++1):(C++Cnew
t ) ← 1.

13: end if

For all the parameters of our state-space model, i.e.,
matrixW and the relative frequency of variant reads p, we
employ random walk model to create artificial dynamics

φt ∼ p (φt|φt−1) = N
(
φt−1, σ 2) ,

φt ∈ {
p, θcs, c = 0, 1, ...,C, s = 1, ..., S

}
.

(6)

Thus, (5)-(6) describe the system state transition of our
state-space framework.
The observation model that describes the measurement

at time t in the state-space framework is given by

yt ∼ P (yt|Z1:t ,W, p) = P(yt|zt ,W, p)

=
S∏

s=1
binomial (yts|vts, pts) ,

(7)

where yt represents the measurement at time t, the tth
row of Y. Note that, given the state value at time t zt),
the measurement at this time-step is conditionally inde-
pendent of all the past measurements Yt−1. Thus, (7)
details the observationmodel for the proposed state-space
framework. Finally, (5) - (7) state the proposed state-space
framework, comprising of the state transition and the
observation models for resolving tumor heterogeneity. In
summary, the framework described considers, at time t,
the tth row of the input data matrices (Y and V) as the
observed measurement at time t. The tth row of the binary
genotype matrix Z is treated as the hidden state at time
t. The proportions W and the relative frequency p are
treated as the parameters of the model.

Fig. 9 Phylogenetic tree from CLL006
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Table 9 CLL003: estimate of genotype matrix/mutational profile

Gene ADAD1 AMTN APBB2 ASXL1 ATM BPIL2 CHRNB2 CHTF8 FAT3 HERC2 IL11RA MTUS1 MUSK NPY NRG3 PLEKHG5 SEMA3E SF3B1 SHROOM1 SPTAN1

C1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0

C2 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1

The SMC algorithm
Here, we present a brief description of the SMC filter-
ing approach [33, 34] to make inference on the states
(matrix Z) and the parameters (matrix W and p) of
the proposed state-space framework. Assume that we
have a dynamic system which has a hidden state vari-
able xt , a measurement variable yt , an initial state model
(state model when t = 0) and a state transition model
for other time-steps (∀t > 0). In this paper, xt com-
prises of two types of variables: continuous variables φt ,
φt ∈ {

pt0, θ tcs, c = 0, 1, ...,C, s = 1, ..., S
}
and discrete vari-

able zt . Also, (5) - (6) describe the state transition model
and (7) describes the observation model. At every time-
step, given that we have the sequence of measurements
up to the present time-step, i.e., Yt = {

y1, y2, ..., yt
}
,

we are interested in inferring the unobserved sequence
Xt = {x1, x2, ..., xt}.
If we can obtain samples (particles) from the posterior

distribution p (Xt|Yt), then p(Xt|Yt) can be approximated
by the drawn particles. But in most cases, obtaining these
particles is not viable. One way to get an estimate is
by obtaining weighted particles from a different distri-
bution q (Xt|Yt) that has a support which incorporates
the support of p (Xt|Yt). This distribution is known as
importance distribution. Given that we sample N times
from q (Xt|Yt), i.e., {Xi}Ni=1, the associated weights are
computed as

w̃i
t = p (Xt|Yt)

q (Xt|Yt)
and wi

t = w̃i
t∑N

m=1 w̃m
t
, i = 1, ...,N . (8)

Thus, an approximation p̂ (Xt|Yt) of the original poste-
rior distribution p (Xt|Yt) is by

p̂ (Xt|Yt)=
N∑

i=1
wi
tδ

(
Xt−Xi

t
)
, where δ(u)=

{
1, if u=0
0, otherwise.

(9)

This procedure is termed the importance sampling theory.

Table 10 CLL003: estimate of the proportions of subclones in
the samples

Subclone a b c d e

C0 0.00 0.00 0.35 0.00 0.01

C1 0.08 0.05 0.53 0.99 0.98

C2 0.92 0.95 0.12 0.01 0.01

Next, we describe the sequential version of the impor-
tance sampling theory. The first step is to factorize the
posterior distribution of state variables at time t, Xt , given
all the measurements up to and including at time t Yt , i.e.,

p (Xt|Yt) ∝ p (yt|Xt ,Yt−1) p (Xt|Yt−1)

=p (yt|Xt ,Yt−1) p (xt|Xt−1,Yt−1) p (Xt−1|Yt−1) .
(10)

At time t, instead of sampling from the original dis-
tribution p (Xt|Yt) to approximate p (Xt|Yt), we obtain
N weighted particles from the importance distribu-
tion q (Xt|Yt). We write the importance distribution as
q (Xt|Yt) = q (xt|Xt−1,Yt) q (Xt−1|Yt−1), and we com-
pute the associated unnormalized weights as

w̃i
t = p

(
yt|Xi

t ,Yt−1
)
p

(
xit|Xi

t−1,Yt−1
)

q
(
xit|Xi

t ,Yt
)

p
(
Xi
t−1|Yt−1

)

q
(
Xi
t−1|Yt−1

) .

(11)

Imagine that at time t−1, we followed the description of
the sequential version of importance sampling and we had
N particles,

{
Xi
t−1

}N
i=1, drawn from q (Xt−1|Yt−1), and the

associated normalized weights given as

wi
t−1 ∝ p

(
Xi
t−1|Yt−1

)

q
(
Xi
t−1|Yt−1

) , i = 1, ...,N . (12)

From the weighted particles at time t − 1, we eas-
ily obtain weighted particles at time t, i.e.,

{
Xi
t
}N
i=1 =

{
xit ,Xi

t−1
}N
i=1, where xit ∼ q

(
xt|Xi

t−1,Yt
)
. By substitut-

ing (12) into (11), the associated unnormalized weights at
time t satisfy the recursion

w̃i
t ∝ wi

t−1
p

(
yt|Xi

t ,Yt−1
)
p

(
xit|Xi

t−1,Yt−1
)

q
(
xit|Xi

t ,Yt
) , i = 1, ...,N .

(13)

The weights are normalized to sum to one.
The optimal importance distribution that reduces

variability due to one step reweighting is p
(
xit|Xi

t−1,Yt
)
.

This choice reduces the weights equation in (13) to
w̃i
t ∝ wi

t−1p
(
yt|Xi

t−1,Yt−1
)

[44, 45]. However, we
only have closed form solutions for p

(
xit|Xi

t−1,Yt
)

and p
(
yt|Xi

t−1,Yt−1
)
if and only if p

(
yt|Xi

t ,Yt−1
)
and

p
(
xit|Xi

t−1,Yt−1
)
are conjugates. Such conjugacy does
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Fig. 10 Phylogenetic tree from CLL003

not exist in our state-space framework. An equally effi-
cient solution is to choose p

(
xit|Xi

t−1
)
in (5)-(6) as the

importance distribution [46–49]. Because of indepen-
dence assumption in the model, i.e., p

(
xit|Xi

t−1,Yt−1
) =

p
(
xit|Xi

t−1
)

and p
(
yt|Xi

t ,Yt−1
) = p

(
yt|xit

)
, we

rewrite (13) as

w̃i
t ∝ wi

t−1p
(
yt|xit

)

= wi
t−1p

(
yt|zit ,Wi

t
)
,

(14)

and then normalize the weights.
As time progresses, there is degeneracy, a condition

where the variance of the weights increases [33]. To
combat this, we perform resampling at every time-step
[46–49]. The resampling procedure [38] is as follows :
view each weight wi

t as the probability of obtaining the
particle index, draw N particles from the probability dis-
tribution

{
wi
t
}
, replace the old particles with the newly

Table 11 Runtimes and memory consumption for simulated
and real biological dataset

SeqClone Clomial BayClone Cloe

Simulated data 55 (20.48) 53 (18.50) 93 (80.52) 101 (75.20)

CLL003 57 (20.60) 54 (18.80) 98 (81.00) 102 (75.50)

drawn particles and set the new weights to a constant
value 1/N .
The proposed sequential algorithm, SeqClone, for

estimating the states variables and the parameters of our
state-space framework is highlighted in Algorithm 2. To
initialize the algorithm, we assume the following prior
distributions of the model parameters

θ0s
i.i.d∼ gamma (a0, 1) , s = 1, ..., S,

θcs
i.i.d∼ gamma (a1, 1) , s = 1, ..., S, c = 1, ...,C, and

p ∼ beta (a00, b00) .
(15)

In this way, we have wcs = θcs/
∑C

c′=0 θc′ s and as a result,∑C
c′=0 wc′ s = 1. At every time step of the algorithm, we

adaptively perturb the particles of the parameters in φt by
choosing σ = 2% of the value of the particle. We report
the posterior estimates of all the state variables and model
parameters using the method described in [50]. We detail
this in Additional file 1.
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Algorithm 2 SeqClone: SMC Algorithm for Subclone
Inference
Input: Y, V.
1: Initialize N particles

{
zi0, p

i
0,W

i
0
}N
i=1

2: for t = 1, ...,T do
3: for i = 1, ...,N do
4: Sample zit from Zi

t−1 using Algorithm 1.
5: n1 ← number of columns in Zi

t−1
6: n2 ← length of zit
7: m ← (n2 − n1)
8: ifm = 0 then
9:

Zi
t ←

[
Zi
t−1
zit

]

10: SampleWi
t using (6)

11: else
12:

Zi
t ←

[
Zi
t−1 0
zit

]

13: SampleWi
t using (6).

14: Sample new rows ofWi
t from themodel in (15).

15: end if
16: Compute w̃i

t using (14)
17: end for
18: Perform weights normalization
19: Resample
20: end for
21: Final samples and the associated weights are used in

approximating the posterior estimates of unknown
variables, using the procedures highlighted in [28, 50].

Additional file

Additional file 1: Supplementary Material for “SeqClone: Sequential
Monte Carlo Based Inference of Tumor Subclones”. (PDF 203 kb)
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