61 research outputs found
Molecular Imaging Approaches in Dementia
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease
Molecular Imaging Approaches in Dementia
The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease
Design of the NL-ENIGMA study: Exploring the effect of Souvenaid on cerebral glucose metabolism in early Alzheimer's disease
Alzheimer's disease is associated with early synaptic loss. Specific nutrients are known to be rate limiting for synapse formation. Studies have shown that administering specific nutrients may improve memory function, possibly by increasing synapse formation. This Dutch study explores the Effect of a specific Nutritional Intervention on cerebral Glucose Metabolism in early Alzheimer's disease (NL-ENIGMA, Dutch Trial Register NTR4718, http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4718). The NL-ENIGMA study is designed to test whether the specific multinutrient combination Fortasyn Connect present in the medical food Souvenaid influences cerebral glucose metabolism as a marker for improved synapse function. Methods This study is a double-blind, randomized controlled parallel-group single-center trial. Forty drug-naive patients with mild cognitive impairment or mild dementia with evidence of amyloid deposition are 1:1 randomized to receive either the multinutrient combination or placebo once daily. Main exploratory outcome parameters include absolute quantitative positron emission tomography with 18F-fluorodeoxyglucose (including arterial sampling) and standard uptake value ratios normalized for the cerebellum or pons after 24Â weeks. Discussion We expect the NL-ENIGMA study to provide further insight in the potential of this multinutrient combination to improve synapse function
Physical activity levels in cognitively normal and cognitively impaired oldest-old and the association with dementia risk factors: a pilot study
BACKGROUND: Research assessing the relationship of physical activity and dementia is usually based on studies with individuals younger than 90 years of age. The primary aim of this study was to determine physical activity levels of cognitively normal and cognitively impaired adults older than 90 years of age (oldest-old). Our secondary aim was to assess if physical activity is associated with risk factors for dementia and brain pathology biomarkers. METHODS: Physical activity was assessed in cognitively normal (N = 49) and cognitively impaired (N = 12) oldest-old by trunk accelerometry for a 7-day period. We tested physical performance parameters and nutritional status as dementia risk factors, and brain pathology biomarkers. Linear regression models were used to examine the associations, correcting for age, sex and years of education. RESULTS: Cognitively normal oldest-old were on average active for a total duration of 45 (SD 27) minutes per day, while cognitively impaired oldest-old seemed less physically active with 33 (SD 21) minutes per day with a lower movement intensity. Higher active duration and lower sedentary duration were related to better nutritional status and better physical performance. Higher movement intensities were related to better nutritional status, better physical performance and less white matter hyperintensities. Longer maximum walking bout duration associated with more amyloid binding. CONCLUSION: We found that cognitively impaired oldest-old are active at a lower movement intensity than cognitively normal oldest-old individuals. In the oldest-old, physical activity is related to physical parameters, nutritional status, and moderately to brain pathology biomarkers
Exploring effects of Souvenaid on cerebral glucose metabolism in Alzheimer's disease
Introduction
Alzheimer's disease (AD) is associated with synapse loss. Souvenaid, containing the specific nutrient combination Fortasyn Connect, was designed to improve synapse formation and function. The NL-ENIGMA study explored the effect of Souvenaid on synapse function in early AD by assessing cerebral glucose metabolism (CMRglc) with 18F-fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET).
Methods
We conducted an exploratory double-blind randomized controlled single-center trial. Fifty patients with mild cognitive impairment or mild dementia with evidence of amyloid pathology (cerebrospinal fluid or PET) were stratified for MMSE (20–24 and 25–30) and randomly 1:1 allocated to 24-week daily administration of 125 mL Souvenaid (n = 25) or placebo (n = 25). Dynamic 60-minute [18F]FDG-PET scans (21 frames) with arterial sampling were acquired at baseline and 24 weeks. CMRglc was estimated by quantitative (Ki) and semiquantitative (standardized uptake value ratio, reference cerebellar gray matter) measurements in five predefined regions of interest and a composite region of interest. Change from baseline in CMRglc was compared between treatment groups by analysis of variance, adjusted for baseline CMRglc and MMSE stratum. Additional exploratory outcome parameters included voxel-based analyses by Statistical Parametric Mapping.
Results
No baseline differences between treatment groups were found (placebo/intervention: n = 25/25; age 66 ± 8/65 ± 7 years; female 44%/48%; MMSE 25 ± 3/25 ± 3). [18F]FDG-PET data were available for quantitative (placebo n = 19, intervention n = 18) and semiquantitative (placebo n = 20, intervention n = 22) analyses. At follow-up, no change within treatment groups and no statistically significant difference in change between treatment groups in CMRglc in any regions of interest were found by both quantitative and semiquantitative analyses. No treatment effect was found in the cerebellar gray matter using quantitative measures. The additional Statistical Parametric Mapping analyses did not yield consistent differences between treatment groups.
Discussion
In this exploratory trial, we found no robust effect of 24-week intervention with Souvenaid on synapse function measured by [18F]FDG-PET. Possible explanations include short duration of treatment
Amyloid-β, cortical thickness, and subsequent cognitive decline in cognitively normal oldest-old.
OBJECTIVE: To investigate the relationship between amyloid-β (Aβ) deposition and markers of brain structure on cognitive decline in oldest-old individuals with initial normal cognition. METHODS: We studied cognitive functioning in four domains at baseline and change over time in fifty-seven cognitively intact individuals from the EMIF-AD 90+ study. Predictors were Aβ status determined by [18 F]-flutemetamol PET (normal = Aβ - vs. abnormal = Aβ+), cortical thickness in 34 regions and hippocampal volume. Mediation analyses were performed to test whether effects of Aβ on cognitive decline were mediated by atrophy of specific anatomical brain areas. RESULTS: Subjects had a mean age of 92.7 ± 2.9 years, of whom 19 (33%) were Aβ+. Compared to Aβ-, Aβ+ individuals showed steeper decline on memory (β ± SE = -0.26 ± 0.09), and processing speed (β ± SE = -0.18 ± 0.08) performance over 1.5 years (P < 0.05). Furthermore, medial and lateral temporal lobe atrophy was associated with steeper decline in memory and language across individuals. Mediation analyses revealed that part of the memory decline observed in Aβ+ individuals was mediated through parahippocampal atrophy. INTERPRETATION: These results show that Aβ abnormality even in the oldest old with initially normal cognition is not part of normal aging, but is associated with a decline in cognitive functioning. Other pathologies may also contribute to decline in the oldest old as cortical thickness predicted cognitive decline similarly in individuals with and without Aβ pathology
Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease
PURPOSE:
To investigate whether multivariate pattern recognition analysis of arterial spin labeling (ASL) perfusion maps can be used for classification and single-subject prediction of patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and subjects with subjective cognitive decline (SCD) after using the W score method to remove confounding effects of sex and age.
MATERIALS AND METHODS:
Pseudocontinuous 3.0-T ASL images were acquired in 100 patients with probable AD; 60 patients with MCI, of whom 12 remained stable, 12 were converted to a diagnosis of AD, and 36 had no follow-up; 100 subjects with SCD; and 26 healthy control subjects. The AD, MCI, and SCD groups were divided into a sex- and age-matched training set (n = 130) and an independent prediction set (n = 130). Standardized perfusion scores adjusted for age and sex (W scores) were computed per voxel for each participant. Training of a support vector machine classifier was performed with diagnostic status and perfusion maps. Discrimination maps were extracted and used for single-subject classification in the prediction set. Prediction performance was assessed with receiver operating characteristic (ROC) analysis to generate an area under the ROC curve (AUC) and sensitivity and specificity distribution.
RESULTS:
Single-subject diagnosis in the prediction set by using the discrimination maps yielded excellent performance for AD versus SCD (AUC, 0.96; P .05).
CONCLUSION:
With automated methods, age- and sex-adjusted ASL perfusion maps can be used to classify and predict diagnosis of AD, conversion of MCI to AD, stable MCI, and SCD with good to excellent accuracy and AUC values
Diagnostic Accuracy of the Frontotemporal Dementia Consensus Criteria in the Late-Onset Frontal Lobe Syndrome
BACKGROUND/AIMS: We aimed to prospectively assess the diagnostic accuracy of the revised criteria for behavioural variant frontotemporal dementia (bvFTD) among subjects presenting with a frontal lobe syndrome in middle-late adulthood.
METHODS: Patients were included based on a predominant behavioural clinical presentation, a Frontal Behavioural Inventory (FBI) score of ≥11 and/or a Stereotypy Rating Inventory (SRI) score of ≥10. At baseline, the fulfilment of the international consensus criteria for behavioural variant FTD (FTDC) was systematically recorded. The 2-year follow-up consensus diagnosis was used as the gold standard to calculate sensitivity and specificity of the FTDC criteria for possible and probable bvFTD.
RESULTS: Two-year follow-up data were available for 116 patients (85%). Two-year follow-up consensus diagnoses consisted of probable/definite bvFTD (n = 27), other dementia (n = 30), psychiatric disorders (n = 46) and other neurological disorders (n = 13). Sensitivity for possible bvFTD was 85% (95% CI 70-95%) at a specificity of 27% (95% CI 19-37%). Sensitivity for probable bvFTD was 85% (95% CI 69-95%), whereas their specificity was 82% (95% CI 73-89%).
CONCLUSIONS: We found a good diagnostic accuracy for FTDC probable bvFTD. However, the specificity for FTDC possible bvFTD was low. Our results reflect the symptomatic overlap between bvFTD, other neurological conditions and psychiatric disorders, and the relevance of adding neuroimaging to the diagnostic process
Nutritional status and structural brain changes in Alzheimer's disease: The NUDAD project
INTRODUCTION: Weight loss is associated with higher mortality and progression of cognitive decline, but its associations with magnetic resonance imaging (MRI) changes related to Alzheimer's disease (AD) are unknown. METHODS: We included 412 patients from the NUDAD project, comprising 129 with AD dementia, 107 with mild cognitive impairment (MCI), and 176 controls. Associations between nutritional status and MRI measures were analyzed using linear regression, adjusted for age, sex, education, cognitive functioning, and cardiovascular risk factors. RESULTS: Lower body mass index (BMI), fat mass (FM), and fat free mass index were associated with higher medial temporal atrophy (MTA) scores. Lower BMI, FM, and waist circumference were associated with more microbleeds. Stratification by diagnosis showed that the observed associations with microbleeds were only significant in MCI. DISCUSSION: Lower indicators of nutritional status were associated with more MTA and microbleeds, with largest effect sizes in MCI
Tau PET and relative cerebral blood flow in Dementia with Lewy bodies: A PET study
Purpose: Alpha-synuclein often co-occurs with Alzheimer’s disease (AD) pathology in Dementia with Lewy Bodies (DLB). From a dynamic [18F]flortaucipir PET scan we derived measures of both tau binding and relative cerebral blood flow (rCBF). We tested whether regional tau binding or rCBF differed between DLB patients and AD patients and controls and examined their association with clinical characteristics of DLB. /
Methods: Eighteen patients with probable DLB, 65 AD patients and 50 controls underwent a dynamic 130-minute [18F]flortaucipir PET scan. DLB patients with positive biomarkers for AD based on cerebrospinal fluid or amyloid PET were considered as DLB with AD pathology(DLB-AD+). Receptor parametric mapping(cerebellar gray matter reference region) was used to extract regional binding potential (BPND) and R1, reflecting (AD-specific) tau pathology and rCBF, respectively. First, we performed regional comparisons of [18F]flortaucipir BPND and R1 between diagnostic groups. In DLB patients only, we performed regression analyses between regional [18F]flortaucipir BPND, R1 and performance on ten neuropsychological tests. /
Results: Regional [18F]flortaucipir BPND in DLB was comparable with tau binding in controls (p>0.05). Subtle higher tau binding was observed in DLB-AD+ compared to DLB-AD- in the medial temporal and parietal lobe (both p<0.05). Occipital and lateral parietal R1 was lower in DLB compared to AD and controls (all p<0.01). Lower frontal R1 was associated with impaired performance on digit span forward (standardized beta, stβ=0.72) and category fluency (stβ=0.69) tests. Lower parietal R1 was related to lower delayed (stβ=0.50) and immediate (stβ=0.48) recall, VOSP number location (stβ=0.70) and fragmented letters (stβ=0.59) scores. Lower occipital R1 was associated to worse performance on VOSP fragmented letters (stβ=0.61), all p<0.05. /
Conclusion: The amount of tau binding in DLB was minimal and did not differ from controls. However, there were DLB-specific occipital and lateral parietal relative cerebral blood flow reductions compared to both controls and AD patients. Regional rCBF, but not tau binding, was related to cognitive impairment. This indicates that assessment of rCBF may give more insight into disease mechanisms in DLB than tau PET
- …