50 research outputs found

    Associations of ATR and CHEK1 Single Nucleotide Polymorphisms with Breast Cancer

    Get PDF
    DNA damage and replication checkpoints mediated by the ATR-CHEK1 pathway are key to the maintenance of genome stability, and both ATR and CHEK1 have been proposed as potential breast cancer susceptibility genes. Many novel variants recently identified by the large resequencing projects have not yet been thoroughly tested in genome-wide association studies for breast cancer susceptibility. We therefore used a tagging SNP (tagSNP) approach based on recent SNP data available from the 1000 genomes projects, to investigate the roles of ATR and CHEK1 in breast cancer risk and survival. ATR and CHEK1 tagSNPs were genotyped in the Sheffield Breast Cancer Study (SBCS; 1011 cases and 1024 controls) using Illumina GoldenGate assays. Untyped SNPs were imputed using IMPUTE2, and associations between genotype and breast cancer risk and survival were evaluated using logistic and Cox proportional hazard regression models respectively on a per allele basis. Significant associations were further examined in a meta-analysis of published data or confirmed in the Utah Breast Cancer Study (UBCS). The most significant associations for breast cancer risk in SBCS came from rs6805118 in ATR (p=7.6x10-5) and rs2155388 in CHEK1 (p=3.1x10-6), but neither remained significant after meta-analysis with other studies. However, meta-analysis of published data revealed a weak association between the ATR SNP rs1802904 (minor allele frequency is 12%) and breast cancer risk, with a summary odds ratio (confidence interval) of 0.90 (0.83-0.98) [p=0.0185] for the minor allele. Further replication of this SNP in larger studies is warranted since it is located in the target region of 2 microRNAs. No evidence of any survival effects of ATR or CHEK1 SNPs were identified. We conclude that common alleles of ATR and CHEK1 are not implicated in breast cancer risk or survival, but we cannot exclude effects of rare alleles and of common alleles with very small effect sizes

    Modulation of Human Mesenchymal Stem Cell Immunogenicity through Forced Expression of Human Cytomegalovirus US Proteins

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSC) are promising candidates for cell therapy, as they migrate to areas of injury, differentiate into a broad range of specialized cells, and have immunomodulatory properties. However, MSC are not invisible to the recipient's immune system, and upon in vivo administration, allogeneic MSC are able to trigger immune responses, resulting in rejection of the transplanted cells, precluding their full therapeutic potential. Human cytomegalovirus (HCMV) has developed several strategies to evade cytotoxic T lymphocyte (CTL) and Natural Killer (NK) cell recognition. Our goal is to exploit HCMV immunological evasion strategies to reduce MSC immunogenicity. METHODOLOGY/PRINCIPAL FINDINGS: We genetically engineered human MSC to express HCMV proteins known to downregulate HLA-I expression, and investigated whether modified MSC were protected from CTL and NK attack. Flow cytometric analysis showed that amongst the US proteins tested, US6 and US11 efficiently reduced MSC HLA-I expression, and mixed lymphocyte reaction demonstrated a corresponding decrease in human and sheep mononuclear cell proliferation. NK killing assays showed that the decrease in HLA-I expression did not result in increased NK cytotoxicity, and that at certain NK∶MSC ratios, US11 conferred protection from NK cytotoxic effects. Transplantation of MSC-US6 or MSC-US11 into pre-immune fetal sheep resulted in increased liver engraftment when compared to control MSC, as demonstrated by qPCR and immunofluorescence analyses. CONCLUSIONS AND SIGNIFICANCE: These data demonstrate that engineering MSC to express US6 and US11 can be used as a means of decreasing recognition of MSC by the immune system, allowing higher levels of engraftment in an allogeneic transplantation setting. Since one of the major factors responsible for the failure of allogeneic-donor MSC to engraft is the mismatch of HLA-I molecules between the donor and the recipient, MSC-US6 and MSC-US11 could constitute an off-the-shelf product to overcome donor-recipient HLA-I mismatch

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva

    Get PDF
    corecore