10 research outputs found

    Echinococcus granulosus infection in foxes in Coquimbo region, Chile

    Get PDF
    Echinococcus granulosus is a cestode of zoonotic importance that infects a wide range of animals. The main definitive host of this parasite is the domestic dog, which most commonly becomes infected by ingestion of infected tissues from ruminant livestock. In some areas, however, wild carnivores have been reported to be infected with E. granulosus and to potentially have a role in the maintenance of infection. This study explores E. granulosus infection in free-ranging foxes in rural areas of the Coquimbo region. Fecal samples of live-trapped culpeo (Lycalopex culpaeus) and chilla (L. griseus) foxes were obtained in six of previously designed rural sites of the Coquimbo region in Chile between 2005 and 2006. Overall, Echinococcus granulosus coproantigen prevalence in wild foxes by a coproELISA test was 6% (2/33) and ranged from 0% to 20% in the different study sites. The presence of E. granulosus in wild carnivores for the maintenance of this parasite in this region is discussed

    Redefining the "carrier" state for foot-and-mouth disease from the dynamics of virus persistence in endemically affected cattle populations

    Get PDF
    The foot-and-mouth disease virus (FMDV) “carrier” state was defined by van Bekkum in 1959. It was based on the recovery of infectious virus 28 days or more post infection and has been a useful construct for experimental studies. Using historic data from 1,107 cattle, collected as part of a population based study of endemic FMD in 2000, we developed a mixed effects logistic regression model to predict the probability of recovering viable FMDV by probang and culture, conditional on the animal’s age and time since last reported outbreak. We constructed a second set of models to predict the probability of an animal being probang positive given its antibody response in three common non-structural protein (NSP) ELISAs and its age. We argue that, in natural ecological settings, the current definition of a ”carrier” fails to capture the dynamics of either persistence of the virus (as measured by recovery using probangs) or the uncertainty in transmission from such animals that the term implies. In these respects it is not particularly useful. We therefore propose the first predictive statistical models for identifying persistently infected cattle in an endemic setting that captures some of the dynamics of the probability of persistence. Furthermore, we provide a set of predictive tools to use alongside NSP ELISAs to help target persistently infected cattle

    No Gold Standard Estimation of the Sensitivity and Specificity of Two Molecular Diagnostic Protocols for Trypanosoma brucei spp. in Western Kenya

    Get PDF
    African animal trypanosomiasis is caused by a range of tsetse transmitted protozoan parasites includingTrypanosoma vivax, Trypanosoma congolense and Trypansoma brucei. In Western Kenya and other parts of East Africa two subspecies of T. brucei, T.b. brucei and the zoonoticT.b. rhodesiense, co-circulate in livestock. A range of polymerase chain reactions (PCR) have been developed as important molecular diagnostic tools for epidemiological investigations of T. brucei s.l. in the animal reservoir and of its zoonotic potential. Quantification of the relative performance of different diagnostic PCRs is essential to ensure comparability of studies. This paper describes an evaluation of two diagnostic test systems for T. brucei using a T. brucei s.l. specific PCR [1] and a single nested PCR targeting the Internal Transcribed Spacer (ITS) regions of trypanosome ribosomal DNA [2]. A Bayesian formulation of the Hui-Walter latent class model was employed to estimate their test performance in the absence of a gold standard test for detecting T.brucei s.l. infections in ear-vein blood samples from cattle, pig, sheep and goat populations in Western Kenya, stored on Whatman FTA cards. The results indicate that the system employing the T. brucei s.l. specific PCR (Se1 = 0.760) had a higher sensitivity than the ITS-PCR (Se2 = 0.640); both have high specificity (Sp1 = 0.998; Sp2 = 0.997). The true prevalences for livestock populations were estimated (pcattle = 0.091, ppigs = 0.066, pgoats = 0.005, psheep = 0.006), taking into account the uncertainties in the specificity and sensitivity of the two test systems. Implications of test performance include the required survey sample size; due to its higher sensitivity and specificity, the T. brucei s.l. specific PCR requires a consistently smaller sample size than the ITS-PCR for the detection of T. brucei s.l. However the ITS-PCR is able to simultaneously screen samples for other pathogenic trypanosomes and may thus be, overall, a better choice of test in multi-organism studies

    Seroepidemiology of Bovine Viral Diarrhoea Virus (BVDV) in the Adamawa Region of Cameroon and Use of the SPOT Test to Identify Herds with PI Calves

    Get PDF
    Bovine viral diarrhoea, caused by the bovine viral diarrhoea virus (BVDV) in the Pestivirus genus of the Flaviviridae, is one of the most important diseases of cattle world wide causing poor reproductive performance in adult cattle and mucosal disease in calves. In addition it causes immunosuppression and increased susceptibility to other infections, the impact of which is uncertain, particularly in sub-Saharan Africa where animals are exposed to a much wider range and higher intensity of infections compared to Europe. There are no previous estimates of the seroprevalence of BVDV in cattle in Cameroon. This paper describes the serological screening for antibodies to BVDV and antigen of BVDV in a cattle population in the Adamawa Region of Cameroon in 2000. The estimates of herd-level and within herd seroprevalences adjusted for test imperfections were 92% and 30% respectively and 16.5% of herds were classed as having a persistently infected calf (PI) in the herd within the last year based on the “spot” test approach. There was evidence of clustering of herds with PI calves across the north and west of the Region which corresponds with the higher cattle density areas and of self-clearance of infection from herds. A multivariable model was developed for the risk of having a PI calf in the herd; proximity to antelope, owning a goat, mixing with 10 other herds at grazing and the catchment area of the veterinary centre the herd was registered at were all significant risk factors. Very little is known about BVDV in sub-Saharan Africa and these high seroprevalences suggest that there is a large problem which may be having both direct impacts on fertility and neonate mortality and morbidity and also indirect effects through immunosuppression and susceptibility to other infections. Understanding and accounting for BVDV should be an important component of epidemiological studies of other diseases in sub-Saharan Africa

    Comparison of a Flow Assay for Brucellosis Antibodies with the Reference cELISA Test in West African Bos indicus

    Get PDF
    Brucellosis is considered by the Food and Agricultural Organisation and the World Health Organisation as one of the most widespread zoonoses in the world. It is a major veterinary public health challenge as animals are almost exclusively the source of infection for people. It is often undiagnosed in both human patients and the animal sources and it is widely acknowledged that the epidemiology of brucellosis in humans and animals is poorly understood, particularly in sub-Saharan Africa. It is therefore important to develop better diagnostic tools in order to improve our understanding of the epidemiology and also for use in the field for disease control and eradication. As with any new diagnostic test, it is essential that it is validated in as many populations as possible in order to characterise its performance and improve the interpretation of its results. This paper describes a comparison between a new lateral flow assasy (LFA) for bovine brucellosis and the widely used cELISA in a no gold standard analysis to estimate test performance in this West African cattle population. A Bayesian formulation of the Hui-Walter latent class model incorporated previous studies' data on sensitivity and specificity of the cELISA. The results indicate that the new LFA is very sensitive (∼87%) and highly specific (∼97%). The analysis also suggests that the current cut-off of the cELSIA may not be optimal for this cattle population but alternative cut-offs did not significantly change the estimates of the LFA. This study demonstrates the potential usefulness of this simple to use test in field based surveillance and control which could be easily adopted for use in developing countries with only basic laboratory facilities

    Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania

    Get PDF
    Background: Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude. Methodology/Principal Findings: Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively. Conclusions/Significance: The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data

    Abattoir-based estimates of mycobacterial infections in Cameroon

    Get PDF
    Mycobacteria cause major diseases including human tuberculosis, bovine tuberculosis and Johne’s disease. In livestock, the dominant species is M. bovis causing bovine tuberculosis (bTB), a disease of global zoonotic importance. In this study, we estimated the prevalence of Mycobacteria in slaughter cattle in Cameroon. A total of 2,346 cattle were examined in a cross-sectional study at four abattoirs in Cameroon. Up to three lesions per animal were collected for further study and a retropharyngeal lymph node was collected from a random sample of non-lesioned animals. Samples were cultured on Lowenstein Jensen media and the BACTEC MGIT 960 system, and identified using the Hain® Genotype kits. A total of 207/2,346 cattle were identified with bTB-like lesions, representing 4.0% (45/1,129), 11.3% (106/935), 23.8% (38/160) and 14.8% (18/122) of the cattle in the Bamenda, Ngaoundere, Garoua and Maroua abattoirs respectively. The minimum estimated prevalence of M. bovis was 2.8% (1.9–3.9), 7.7% (6.1–9.6), 21.3% (15.2–28.4) and 13.1% (7.7–20.4) in the four abattoirs respectively. One M. tuberculosis and three M. bovis strains were recovered from non-lesioned animals. The high prevalence of M. bovis is of public health concern and limits the potential control options in this setting without a viable vaccine as an alternative

    Molecular epidemiology of Mycobacterium bovis in Cameroon

    Get PDF
    We describe the largest molecular epidemiological study of Bovine Tuberculosis (bTB) in a sub-Saharan African country with higher spatial resolution providing new insights into bTB. Four hundred and ninety-nine samples were collected for culture from 201 and 179 cattle with and without bTB-like lesions respectively out of 2,346 cattle slaughtered at Bamenda, Ngaoundere, Garoua and Maroua abattoirs between 2012-2013. Two hundred and fifty-five M. bovis were isolated, identified and genotyped using deletion analysis, Hain® Genotype MTBC, spoligotyping and MIRU-VNTR. African 1 was the dominant M. bovis clonal complex, with 97 unique genotypes including 19 novel spoligotypes representing the highest M. bovis genetic diversity observed in Africa to date. SB0944 and SB0953 dominated (63%) the observed spoligotypes. A third of animals with multiple lesions had multiple strain infections. Higher diversity but little evidence of recent transmission of M. bovis was more common in Adamawa compared to the North-West Region. The Adamawa was characterised by a high frequency of singletons possibly due to constant additions from an active livestock movement network compared to the North-West Region where a local expansion was more evident. The latter combined with population-based inferences suggest an unstable and stable bTB-endemic status in the North-West and Adamawa Regions respectively
    corecore