9 research outputs found
Ventricular Dysrhythmias Associated with Poisoning and Drug Overdose: A 10-Year Review of Statewide Poison Control Center Data from California
Background: Ventricular dysrhythmias are a serious consequence associated with drug overdose and chemical poisoning. The risk factors for the type of ventricular dysrhythmia and the outcomes by drug class are not well documented. Objective: The aim of this study was to determine the most common drugs and chemicals associated with ventricular dysrhythmias and their outcomes. Methods: We reviewed all human exposures reported to a statewide poison control system between 2002 and 2011 that had a documented ventricular dysrhythmia. Cases were differentiated into two groups by type of arrhythmia: (1) ventricular fibrillation and/or tachycardia (VT/VF); and (2) torsade de pointes (TdP). Results: Among the 300 potential cases identified, 148 cases met the inclusion criteria. Of these, 132 cases (89 %) experienced an episode of VT or VF, while the remaining 16 cases (11 %) had an episode of TdP. The most commonly involved therapeutic classes of drugs associated with VT/VF were antidepressants (33/132, 25 %), stimulants (33/132, 25 %), and diphenhydramine (16/132, 12.1 %). Those associated with TdP were antidepressants (4/16, 25 %), methadone (4/16, 25 %), and antiarrhythmics (3/16, 18.75 %). Drug exposures with the greatest risk of death in association with VT/VF were antidepressant exposure [odds ratio (OR) 1.71; 95 % confidence interval (CI) 0.705–4.181] and antiarrhythmic exposure (OR 1.75; 95 % CI 0.304–10.05), but neither association was statistically significant. Drug exposures with a statistically significant risk for TdP included methadone and antiarrhythmic drugs. Conclusions: Antidepressants and stimulants were the most common drugs associated with ventricular dysrhythmias. Patients with suspected poisonings by medications with a high risk of ventricular dysrhythmia warrant prompt ECG monitoring
Kynurenic Acid Restores Nrf2 Levels and Prevents Quinolinic Acid-Induced Toxicity in Rat Striatal Slices
Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites produced in the degradation of tryptophan and have important neurological activities. KYNA/QUIN ratio changes are known to be associated with central nervous system disorders, such Alzheimer, Parkinson, and Huntington diseases. In the present study, we investigate the ability of KYNA in prevent the first events preceding QUIN-induced neurodegeneration in striatal slices of rat. We evaluated the protective effect of KYNA on oxidative status (reactive oxygen species production, antioxidant enzymes activities, lipid peroxidation, nitrite levels, protein and DNA damage, and iNOS immunocontent), mitochondrial function (mitochondrial mass, membrane potential, and respiratory chain enzymes), and Na+,K+-ATPase in striatal slices of rats treated with QUIN. Since QUIN alters the levels of Nrf2, we evaluated the influence of KYNA protection on this parameter. Striatal slices from 30-day-old Wistar rats were preincubated with KYNA (100 ÎĽM) for 15 min, followed by incubation with 100-ÎĽM QUIN for 30 min. Results showed that KYNA prevented the increase of ROS production caused by QUIN and restored antioxidant enzyme activities and the protein and lipid damage, as well as the Nrf2 levels. KYNA also prevented the effects of QUIN on mitochondrial mass and mitochondrial membrane potential, as well as the decrease in the activities of complex II, SDH, and Na+,K+-ATPase. We suggest that KYNA prevents changes in Nrf2 levels, oxidative imbalance, and mitochondrial dysfunction caused by QUIN in striatal slices. This study elucidates some of the protective effects of KYNA against the damage caused by QUIN toxicity