2,817 research outputs found
Identification of Therapeutic Targets of Inflammatory Monocyte Recruitment to Modulate the Allogeneic Injury to Donor Cornea
Purpose: We sought to test the hypothesis that monocytes contribute to the immunopathogenesis of corneal allograft rejection and identify therapeutic targets to inhibit monocyte recruitment.
Methods: Monocytes and proinflammatory mediators within anterior chamber samples during corneal graft rejection were quantified by flow cytometry and multiplex protein assays. Lipopolysaccharide or IFN-γ stimulation of monocyte-derived macrophages (MDMs) was used to generate inflammatory conditioned media (CoM). Corneal endothelial viability was tested by nuclear counting, connexin 43, and propidium iodide staining. Chemokine and chemokine receptor expression in monocytes and MDMs was assessed in microarray transcriptomic data. The role of chemokine pathways in monocyte migration across microvascular endothelium was tested in vitro by chemokine depletion or chemokine receptor inhibitors.
Results: Inflammatory monocytes were significantly enriched in anterior chamber samples within 1 week of the onset of symptoms of corneal graft rejection. The MDM inflammatory CoM was cytopathic to transformed human corneal endothelia. This effect was also evident in endothelium of excised human cornea and increased in the presence of monocytes. Gene expression microarrays identified monocyte chemokine receptors and cognate chemokines in MDM inflammatory responses, which were also enriched in anterior chamber samples. Depletion of selected chemokines in MDM inflammatory CoM had no effect on monocyte transmigration across an endothelial blood–eye barrier, but selective chemokine receptor inhibition reduced monocyte recruitment significantly.
Conclusions: We propose a role for inflammatory monocytes in endothelial cytotoxicity in corneal graft rejection. Therefore, targeting monocyte recruitment offers a putative novel strategy to reduce donor endothelial cell injury in survival of human corneal allografts
Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.
BACKGROUND:Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. RESULTS:Here we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS. CONCLUSIONS:This assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform
Off-shell supergravity-matter couplings in three dimensions
We develop the superspace geometry of N-extended conformal supergravity in
three space-time dimensions. General off-shell supergravity-matter couplings
are constructed in the cases N=1,2,3,4.Comment: 73 pages; V5: typos in eqs. (3.4b), (3.17) and (4.24) correcte
Expert Premier League soccer managers’ use of transformational leadership behaviours and attitude towards sport integrity: An intrinsic case study
The present study is the first to examine transformational leadership behaviours and integrity attitudes of expert, Premier League and International level football managers. To provide a rich, detailed exploration of the expert managers’ experiences, a qualitative approach was adopted utilising holistic content analysis. Constructed narratives revealed that the key behaviours demonstrated were inspirational messages or team talks (i.e. inspirational motivation), empathy (i.e. individualised consideration), introducing new training methods (i.e. intellectual stimulation), using exemplar players (i.e. appropriate role modelling), and goal setting (i.e. high performance expectations). However, the use and effect of such behaviours varied greatly between managers. Each of the managers also claimed to have been willing to “bend the rules” as a player and frequently used euphemistic labels to describe such behaviour. However, upon entering management, all three managers claimed to have adjusted such attitudes without providing an explanation for this
Myocardial dysfunction in the periinfarct and remote regions following anterior infarction in rats quantified by 2D radial strain echocardiography: An observational cohort study
<p>Abstract</p> <p>Background</p> <p>Heart failure from adverse ventricular remodeling follows myocardial infarction, but the contribution of periinfarct and remote myocardium to the development of cardiomyopathy remains poorly defined. 2D strain echocardiography (2DSE) is a novel and sensitive tool to measure regional myocardial mechanics. The aim is to quantify radial strain in infarcted (I), periinfarct (PI) and remote (R) myocardial regions acutely and chronically following anterior infarction in rats.</p> <p>Methods</p> <p>The left anterior coronary artery of male Sprague-Dawley rats (270–370 g) were occluded for 20–30 minutes and 2DSE was performed in the acute setting (n = 10; baseline and 60 minutes post-reperfusion) and in the chronic setting (n = 14; baseline, 1, 3 and 6 weeks). Using software, radial strain was measured in the mid-ventricle in short axis view. The ventricle was divided into 3 regions: I (anteroseptum, anterior and anterolateral), PI – (inferoseptum and inferolateral) and R – (inferior). Infarct size was measured using triphenyl tetrazolium chloride in the acute group.</p> <p>Results</p> <p>Following infarct, adverse remodeling occurred with progressive increase in left ventricular size, mass and reduced fractional shortening within 6 weeks. Radial strain decreased not only in the infarct but also in the periinfarct and remote regions acutely and chronically (I, PI, R, change vs. baseline, 60 minutes -32.7 ± 8.7, -17.4 ± 9.4, -13.5 ± 11.6%; 6 weeks -24.4 ± 8.2, -17.7 ± 8.3, -15.2 ± 8.4% respectively, all p < 0.05). Reduced radial strain in periinfarct and remote regions occurred despite minimal or absent necrosis (area of necrosis I, PI, R: 48.8 ± 23, 5.1 ± 6.6, 0 ± 0%, p < 0.001 vs. I).</p> <p>Conclusion</p> <p>Following left anterior coronary occlusion, radial strain decreased at 60 minutes and up to 6 weeks in the periinfarct and remote regions, similar to the reduction in the infarct region. This demonstrates early and chronic myopathic process in periinfarct and remote regions following myocardial infarction that may be an under recognized but important contributor to adverse left ventricular remodeling and progression to ischemic cardiomyopathy.</p
Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.
Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda
Context-Specific Metabolic Networks Are Consistent with Experiments
Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are “genome-scale” and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME) to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available
Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.
Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology
Pathogenesis of HIV in the Central Nervous System
HIV can infect the brain and impair central nervous system (CNS) function. Combination antiretroviral therapy (cART) has not eradicated CNS complications. HIV-associated neurocognitive disorders (HAND) remain common despite cART, although attenuated in severity. This may result from a combination of factors including inadequate treatment of HIV reservoirs such as circulating monocytes and glia, decreased effectiveness of cART in CNS, concurrent illnesses, stimulant use, and factors associated with prescribed drugs, including antiretrovirals. This review highlights recent investigations of HIV-related CNS injury with emphasis on cART-era neuropathological mechanisms in the context of both US and international settings
- …