33 research outputs found

    Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals

    Full text link
    The staggered 6-vertex model describes the competition between surface roughening and reconstruction in (100) facets of CsCl type crystals. Its phase diagram does not have the expected generic structure, due to the presence of a fully-packed loop-gas line. We prove that the reconstruction and roughening transitions cannot cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong coupling scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface roughness much larger than the conventional universal value. It seems that additional fluctuations become critical simultaneously.Comment: 31 pages, 9 figure

    Renormalization group trajectories from resonance factorized S-matrices

    Full text link
    We propose and investigate a large class of models possessing resonance factorized S-matrices. The associated Casimir energy describes a rich pattern of renormalization group trajectories related to flows in the coset models based on the simply laced Lie Algebras. From a simplest resonance S-matrix, satisfying the ``ϕ3\phi^3-property'', we predict new flows in non-unitary minimal models.Comment: (7 pages) (no figures included

    Local functional models of critical correlations in thin-films

    Full text link
    Recent work on local functional theories of critical inhomogeneous fluids and Ising-like magnets has shown them to be a potentially exact, or near exact, description of universal finite-size effects associated with the excess free-energy and scaling of one-point functions in critical thin films. This approach is extended to predict the two-point correlation function G in critical thin-films with symmetric surface fields in arbitrary dimension d. In d=2 we show there is exact agreement with the predictions of conformal invariance for the complete spectrum of correlation lengths as well as the detailed position dependence of the asymptotic decay of G. In d=3 and d>=4 we present new numerical predictions for the universal finite-size correlation length and scaling functions determining the structure of G across the thin-film. Highly accurate analytical closed form expressions for these universal properties are derived in arbitrary dimension.Comment: 4 pages, 1 postscript figure. Submitted to Phys Rev Let

    Monte Carlo study of the Widom-Rowlinson fluid using cluster methods

    Full text link
    The Widom-Rowlinson model of a fluid mixture is studied using a new cluster algorithm that is a generalization of the invaded cluster algorithm previously applied to Potts models. Our estimate of the critical exponents for the two-component fluid are consistent with the Ising universality class in two and three dimensions. We also present results for the three-component fluid.Comment: 13 pages RevTex and 2 Postscript figure

    A model with simultaneous first and second order phase transitions

    Full text link
    We introduce a two dimensional nonlinear XY model with a second order phase transition driven by spin waves, together with a first order phase transition in the bond variables between two bond ordered phases, one with local ferromagnetic order and another with local antiferromagnetic order. We also prove that at the transition temperature the bond-ordered phases coexist with a disordered phase as predicted by Domany, Schick and Swendsen. This last result generalizes the result of Shlosman and van Enter (cond-mat/0205455). We argue that these phenomena are quite general and should occur for a large class of potentials.Comment: 7 pages, 7 figures using pstricks and pst-coi

    Thermodynamics and Topology of Disordered Systems: Statistics of the Random Knot Diagrams on Finite Lattice

    Full text link
    The statistical properties of random lattice knots, the topology of which is determined by the algebraic topological Jones-Kauffman invariants was studied by analytical and numerical methods. The Kauffman polynomial invariant of a random knot diagram was represented by a partition function of the Potts model with a random configuration of ferro- and antiferromagnetic bonds, which allowed the probability distribution of the random dense knots on a flat square lattice over topological classes to be studied. A topological class is characterized by the highest power of the Kauffman polynomial invariant and interpreted as the free energy of a q-component Potts spin system for q->infinity. It is shown that the highest power of the Kauffman invariant is correlated with the minimum energy of the corresponding Potts spin system. The probability of the lattice knot distribution over topological classes was studied by the method of transfer matrices, depending on the type of local junctions and the size of the flat knot diagram. The obtained results are compared to the probability distribution of the minimum energy of a Potts system with random ferro- and antiferromagnetic bonds.Comment: 37 pages, latex-revtex (new version: misprints removed, references added

    From Tomonaga-Luttinger to Fermi liquid in transport through a tunneling barrier

    Full text link
    Finite length of a one channel wire results in crossover from a Tomonaga-Luttinger to Fermi liquid behavior with lowering energy scale. In condition that voltage drop (V)(V) mostly occurs across a tunnel barrier inside the wire we found coefficients of temperature/voltage expansion of low energy conductance as a function of constant of interaction, right and left traversal times. At higher voltage the finite length contribution exhibits oscillations related to both traversal times and becomes a slowly decaying correction to the scale-invariant V1/g1V^{1/g-1} dependence of the conductance.Comment: 12 pages of RevTex file and 1 PS file figur

    Metal-insulator transition in the one-dimensional SU(N) Hubbard model

    Full text link
    We investigate the metal-insulator transition of the one-dimensional SU(N) Hubbard model for repulsive interaction. Using the bosonization approach a Mott transition in the charge sector at half-filling (k_F=\pi/Na_0) is conjectured for N > 2. Expressions for the charge and spin velocities as well as for the Luttinger liquid parameters and some correlation functions are given. The theoretical predictions are compared with numerical results obtained with an improved zero-temperature quantum Monte Carlo approach. The method used is a generalized Green's function Monte Carlo scheme in which the stochastic time evolution is partially integrated out. Very accurate results for the gaps, velocities, and Luttinger liquid parameters as a function of the Coulomb interaction U are given for the cases N=3 and N=4. Our results strongly support the existence of a Mott-Hubbard transition at a {\it non-zero} value of the Coulomb interaction. We find Uc2.2U_c \sim 2.2 for N=3 and Uc2.8U_c \sim 2.8 for N=4.Comment: 22 pages, 9 Fig

    Ising Universality in Three Dimensions: A Monte Carlo Study

    Full text link
    We investigate three Ising models on the simple cubic lattice by means of Monte Carlo methods and finite-size scaling. These models are the spin-1/2 Ising model with nearest-neighbor interactions, a spin-1/2 model with nearest-neighbor and third-neighbor interactions, and a spin-1 model with nearest-neighbor interactions. The results are in accurate agreement with the hypothesis of universality. Analysis of the finite-size scaling behavior reveals corrections beyond those caused by the leading irrelevant scaling field. We find that the correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbor interactions or a third spin state. In a spin-1 Ising model, these corrections appear to be very small. This is very helpful for the determination of the universal constants of the Ising model. The renormalization exponents of the Ising model are determined as y_t = 1.587 (2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q = ^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry. The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546 (10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal of Physics A
    corecore