326 research outputs found

    Chemical properties of 11 date cultivars and their corresponding fiber extracts

    Get PDF
    Date palm fruit from 11 Tunisian cultivars (Phoenix dactylifera L.) were analyzed for their main chemical composition. Results showed that date fruits were rich in sugar (79.93 - 88.02 g/100 g dry matter), fiber(8.09 - 20.25 g/100 g dry matter) and ash (1.73 - 2.59 g/100 g dry matter). Mineral fraction was dominated by potassium and sugar fraction was dominated by reducing sugar (glucose, fructose) except for Deglet Nour, Kentichi and Bajo which are rich in sucrose. Date fiber concentrates (DFC) were extracted and analyzed for their proximate content (moisture, fiber, protein, lipid and ash) and some functional properties such as water holding capacity (WHC) and oil holding capacity (OHC). DFC presented high dietary fiber content (90.71 - 93.92 g/100g dry matter). Protein and lipid contents (dry matter basis) ranged between 3.66 and 6.06 g/100 g and between 0.35 and 1.08 g/100 g, respectively. DFC presentedhigh WHC (6.20 g water/g dry fiber) and high OHC (1.80 g oil/g dry fiber). Results showed that dates could be a valuable source of highly techno-functional fibers that could be used in food formulations

    Phosphorus fractionation chemistry across the Great Plains

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Includes bibliographical references.Phosphorus is one of the three important plant nutrients found in soils and has been used with great success as an index for soil and ecosystem development (Aguilar et al., 1988; Honeycutt et al., 1990; Vitousek et al., 2004). In general, phosphorus is has minimal solubility in soil because it participates in a number of secondary reactions after release from primary minerals as a result of weathering. Studies of the biogeochemical cycling of P in humid ecosystems has led to important insights about soil and ecosystem development. Arid and semi-arid ecosystems have largely been ignored under the assumption that chemical transformations are minimal. We conducted research on the biogeochemistry of P along a bioclimatic gradient in grassland ecosystems of the Great Plains. The overall goal of our research is to use a systematic approach to characterize and further quantify the P transformations in biogeographically diverse grassland ecosystems. Identifying P quantities originally contained in central Great Plains soil will allow us to assess 1) the relative importance of P in the biogeochemical behavior of grassland soils, 2) help us quantify the degree of chemical weathering in semi-arid-humid grassland ecosystems, and 3) elucidate cultural use and potential productivity of these ecosystems prior to use of commercial fertilizers. We sampled soils along a bioclimatic gradient that represent three grassland ecosystems, namely, the shortgrass steppe, the mixed-grass prairie, and the tallgrass prairie in eastern Kansas. The soils were collected from sites studied within the Long-Term Ecological Research Program in areas that had not been used for agricultural practices other than grazing. We conducted a sequential extraction procedure to identify the following P fractions: soluble, Al-bound, Fe-bound, occluded, and Ca-bound. Our results suggest that soluble P is generally below detection limits at these sites, illustrating the high turnover rate of available P in these undisturbed systems. The Al-bound fraction was variable across all sites. The Fe-bound P contributed to the total P fraction only from the mixed grass and tall grass prairies. The occluded P fraction was greatest in the shortgrass steppe, decreased dramatically as mean annual and primary production increase from west to east.NSF Grant No. 0217631

    Ariel - Volume 2 Number 5

    Get PDF
    Editors Delvyn C. Case, Jr. Paul M. Fernhoff News Editors Richard Bonanno Robin A. Edwards Features Editors Stephen P. Flynn Steven A. Ager Lay-Out Editor Carol Dolinskas Contributing Editors Michael J. Blecker W. Cherry Light Eugenia Miller Lin Sey Edwards Jack Guralnik Tom Williams James Noco

    Ariel - Volume 2 Number 3

    Get PDF
    Editors Delvyn C. Case, Jr. Paul M. Fernhoff News Editors Richard Bonanno Daniel B. Gould Robin A. Edwards Lay-Out Editor Carol Dolinskas Sports Editor James J. Nocon Contributing Editors Michael J. Blecker Lin Sey Edwards Jack Guralnik W. Cherry Light Features Editor Steven A. Ager Donald A. Bergman Stephen P. Flynn Business Manager Nick Greg
    • …
    corecore