10,237 research outputs found

    The Near-Infrared Photometric Properties of Bright Giants in the Central Regions of the Galactic Bulge

    Get PDF
    Images recorded through broad (J, H, K), and narrow (CO, and 2.2micron continuum) band filters are used to investigate the photometric properties of bright (K < 13.5) stars in a 6 x 6 arcmin field centered on the SgrA complex. The giant branch ridgelines in the (K, J-K) and (K, H-K) color-magnitude diagrams are well matched by the Baade's Window (BW) M giant sequence if the mean extinction is A_K ~ 2.8 mag. Extinction measurements for individual stars are estimated using the M_K versus infrared color relations defined by M giants in BW, and the majority of stars have A_K between 2.0 and 3.5 mag. The extinction is locally high in the SgrA complex, where A_K ~ 3.1 mag. Reddening-corrected CO indices, CO_o, are derived for over 1300 stars with J, H, and K brightnesses, and over 5300 stars with H and K brightnesses. The distribution of CO_o values for stars with K_o between 11.25 and 7.25 can be reproduced using the M_K versus CO_o relation defined by M giants in BW. The data thus suggest that the most metal-rich giants in the central regions of the bulge and in BW have similar photometric properties and 2.3micron CO strengths. Hence, it appears that the central region of the bulge does not contain a population of stars that are significantly more metal-rich than what is seen in BW.Comment: 29 pages, including 14 figure

    Chiral properties of hematite ({\alpha}-Fe2O3) inferred from resonant Bragg diffraction using circularly polarized x-rays

    Full text link
    Chiral properties of the two phases - collinear motif (below Morin transition temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered hematite ({\alpha}-Fe2O3) have been identified in single crystal resonant x-ray Bragg diffraction, using circular polarized incident x-rays tuned near the iron K-edge. Magneto-electric multipoles, including an anapole, fully characterize the high-temperature canted phase, whereas the low-temperature collinear phase supports both parity-odd and parity-even multipoles that are time-odd. Orbital angular momentum accompanies the collinear motif, while it is conspicuously absent with the canted motif. Intensities have been successfully confronted with analytic expressions derived from an atomic model fully compliant with chemical and magnetic structures. Values of Fe atomic multipoles previously derived from independent experimental data, are shown to be completely trustworthy

    Fermions and Kaluza-Klein vacuum decay: a toy model

    Full text link
    We address the question of whether or not fermions with twisted periodicity condition suppress the semiclassical decay of M^4xS^1 Kaluza--Klein vacuum. We consider a toy (1+1)-dimensional model with twisted fermions in cigar-shaped Euclidean background geometry and calculate the fermion determinant. We find that contrary to expectations, the determinant is finite. We consider this as an indication that twisted fermions do not stabilize the Kaluza--Klein vacuum.Comment: 13 pages, 2 figure

    Volume modulus inflation and a low scale of SUSY breaking

    Full text link
    The relation between the Hubble constant and the scale of supersymmetry breaking is investigated in models of inflation dominated by a string modulus. Usually in this kind of models the gravitino mass is of the same order of magnitude as the Hubble constant which is not desirable from the phenomenological point of view. It is shown that slow-roll saddle point inflation may be compatible with a low scale of supersymmetry breaking only if some corrections to the lowest order Kahler potential are taken into account. However, choosing an appropriate Kahler potential is not enough. There are also conditions for the superpotential, and e.g. the popular racetrack superpotential turns out to be not suitable. A model is proposed in which slow-roll inflation and a light gravitino are compatible. It is based on a superpotential with a triple gaugino condensation and the Kahler potential with the leading string corrections. The problem of fine tuning and experimental constraints are discussed for that model.Comment: 28 pages, 8 figures, comments and references added, minor change in notation, version to be publishe

    Sparse 3D Point-cloud Map Upsampling and Noise Removal as a vSLAM Post-processing Step: Experimental Evaluation

    Full text link
    The monocular vision-based simultaneous localization and mapping (vSLAM) is one of the most challenging problem in mobile robotics and computer vision. In this work we study the post-processing techniques applied to sparse 3D point-cloud maps, obtained by feature-based vSLAM algorithms. Map post-processing is split into 2 major steps: 1) noise and outlier removal and 2) upsampling. We evaluate different combinations of known algorithms for outlier removing and upsampling on datasets of real indoor and outdoor environments and identify the most promising combination. We further use it to convert a point-cloud map, obtained by the real UAV performing indoor flight to 3D voxel grid (octo-map) potentially suitable for path planning.Comment: 10 pages, 4 figures, camera-ready version of paper for "The 3rd International Conference on Interactive Collaborative Robotics (ICR 2018)

    Tunneling mechanism of light transmission through metallic films

    Get PDF
    A mechanism of light transmission through metallic films is proposed, assisted by tunnelling between resonating buried dielectric inclusions. This is illustrated by arrays of Si spheres embedded in Ag. Strong transmission peaks are observed near the Mie resonances of the spheres. The interaction among various planes of spheres and interference effects between these resonances and the surface plasmons of Ag lead to mixing and splitting of the resonances. Transmission is proved to be limited only by absorption. For small spheres, the effective dielectric constant can be tuned to values close to unity and a method is proposed to turn the resulting materials invisible.Comment: 4 papges, 5 figure

    Enhanced dimerization of TiOCl under pressure: spin-Peierls - to - Peierls transition

    Full text link
    We report high-pressure x-ray diffraction and magnetization measurements combined with ab-initio calculations to demonstrate that the high-pressure optical and transport transitions recently reported in TiOCl, correspond in fact to an enhanced Ti3+-Ti3+ dimerization existing already at room temperature. Our results confirm the formation of a metal-metal bond between Ti3+ ions along the b-axis of TiOCl, accompanied by a strong reduction of the electronic gap. The evolution of the dimerization with pressure suggests a crossover from the spin-Peierls to a conventional Peierls situation at high pressures.Comment: 9pages, 4 figure

    Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

    Full text link
    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies Gorobets, A. Y., Borrero, J. M., & Berdyugina, S. 2016, ApJL, 825, L18 of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field's evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.Comment: 11 pages, 5 figures, The Astrophysical Journal Supplement Series (accepted
    • …
    corecore