16,763 research outputs found

    ROSAT observations of two 'cooling flow' EMSS Galaxies

    Full text link
    We present ROSAT observations of two luminous L~10^44 erg/s EMSS galaxies, MS1019+5139 and MS1209+3917, previously classified as 'cooling flow' galaxies. MS1019+5139 does not appear to be spatially extended (<13 kpc) while its spectrum is well fit by a power law with Gamma = 1.73 +0.19-0.18; X-ray variability on a timescale of ~ years is also clearly detected. MS1209+3917 shows no evidence of spatial extension (<50 kpc) but it shows variability, while its spectrum can be fit with thermal bremsstrahlung emission (kT=1.8 +0.9-0.4 keV) or a power law model (Gamma = 2.50 +0.44-0.42, but with excess photoelectric absorption above the Galactic value). All the above argue against thermal emission from a group of galaxies or a galaxy but in favour of an AGN (possibly BL Lac) interpretation. We conclude that no 'normal' galaxies with high X-ray luminosities have yet been detected in the EMSS survey that could be significant contributors to the X-ray background.Comment: 6 pages, LaTeX, 6 postscript figures included, to appear in MNRA

    Bottom-Up Reconstruction Scenarios for (un)constrained MSSM Parameters at the LHC

    Full text link
    We consider some specific inverse problem or "bottom-up" reconstruction strategies at the LHC for both general and constrained MSSM parameters, starting from a plausibly limited set of sparticle identification and mass measurements, using mainly gluino/squark cascade decays, plus eventually the lightest Higgs boson mass. For the three naturally separated sectors of: gaugino/Higgsino, squark/slepton, and Higgs parameters, we examine different step-by-step algorithms based on rather simple, entirely analytical, inverted relations between masses and basic MSSM parameters. This includes also reasonably good approximations of some of the relevant radiative correction calculations. We distinguish the constraints obtained for a general MSSM from those obtained with universality assumptions in the three different sectors. Our results are compared at different stages with the determination from more standard "top-down" fit of models to data, and finally combined into a global determination of all the relevant parameters. Our approach gives complementary information to more conventional analysis, and is not restricted to the specific LHC measurement specificities. In addition, the bottom-up renormalization group evolution of general MSSM parameters, being an important ingredient in this framework, is illustrated as a new publicly available option of the MSSM spectrum calculation code "SuSpect".Comment: 52 pages, 22 figures. Slight reorganization of sections, a few more results for the neutralino sector, one appendix added on neutralino sector calculation details. Version to appear in Phys. Rev.

    On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers

    Full text link
    This paper reports a comprehensive study on the gravitational wave (GW) background from compact binary coalescences. We consider in our calculations newly available observation-based neutron star and black hole mass distributions and complete analytical waveforms that include post-Newtonian amplitude corrections. Our results show that: (i) post-Newtonian effects cause a small reduction in the GW background signal; (ii) below 100 Hz the background depends primarily on the local coalescence rate r0r_0 and the average chirp mass and is independent of the chirp mass distribution; (iii) the effects of cosmic star formation rates and delay times between the formation and merger of binaries are linear below 100 Hz and can be represented by a single parameter within a factor of ~ 2; (iv) a simple power law model of the energy density parameter ΩGW(f) f2/3\Omega_{GW}(f) ~ f^{2/3} up to 50-100 Hz is sufficient to be used as a search template for ground-based interferometers. In terms of the detection prospects of the background signal, we show that: (i) detection (a signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO detectors (H1-L1) requires a coalescence rate of r0=3(0.2)Mpc3Myr1r_0 = 3 (0.2) Mpc^{-3} Myr^{-1} for binary neutron stars (binary black holes); (ii) this limit on r0r_0 could be reduced 3-fold for two co-located detectors, whereas the currently proposed worldwide network of advanced instruments gives only ~ 30% improvement in detectability; (iii) the improved sensitivity of the planned Einstein Telescope allows not only confident detection of the background but also the high frequency components of the spectrum to be measured. Finally we show that sub-threshold binary neutron star merger events produce a strong foreground, which could be an issue for future terrestrial stochastic searches of primordial GWs.Comment: A few typos corrected to match the published version in MNRA

    Effect of tail-fin span on stability and control characteristics of a Canard-controlled missile at supersonic Mach numbers

    Get PDF
    An experimental wind-tunnel investigation was conducted at Mach numbers from 1.60 to 3.50 to obtain the longitudinal and lateral-directional aerodynamic characteristics of a circular, cruciform, canard-controlled missile with variations in tail-fin span. In addition, comparisons were made with the experimental aerodynamic characteristics using three missile aeroprediction programs: MISSILE1, MISSILE2, and NSWCDM. The results of the investigation indicate that for the test Mach number range, canard roll control at low angles of attack is feasible on tail-fin configurations with tail-to-canard span ratios of less than or equal to 0.75. The conards are effective pitch and yaw control devices on each tail-fin span configuration tested. Programs MISSILE1 and MISSILE2 provide very good predictions of longitudinal aerodynamic characteristics and fair predictions of lateral-directional aerodynamic characteristics at low angles of attack, with MISSILE2 predictions generally in better agreement with test data. Program NSWCDM provides good longitudinal and lateral-directional aerodynamic predictions that improve with increases in tail-tin span

    Sparticle Mass Spectrum in Grand Unified Theories

    Full text link
    We carry out a detailed analysis of sparticle mass spectrum in supersymmetric grand unified theories. We consider the spectroscopy of the squarks and sleptons in SU(5) and SO(10) grand unified theories, and show how the underlying supersymmetry breaking parameters of these theories can be determined from a measurement of different sparticle masses. This analysis is done analytically by integrating the one-loop renormalization group equations with appropriate boundary conditions implied by the underlying grand unified gauge group. We also consider the impact of non-universal gaugino masses on the sparticle spectrum, especially the neutralino and chargino masses which arise in supersymmetric grand unified theories with non-minimal gauge kinetic function. In particular, we study the interrelationships between the squark and slepton masses which arise in grand unified theories at the one-loop level, which can be used to distinguish between the different underlying gauge groups and their breaking pattern to the Standard Model gauge group. We also comment on the corrections that can affect these one-loop results.Comment: 19 pages, 6 figure

    Flexible programmable networking: A reflective, component-based approach

    Get PDF
    The need for programmability and adaptability in networking systems is becoming increasingly important. More specifically, the challenge is in the ability to add services rapidly, and be able to deploy, configure and reconfigure them as easily as possible. Such demand is creating a considerable shift in the way networks are expected to operate in the future. This is the main aim of programmable networking research community, and in our project we are investigating a component-based approach to the structuring of programmable networking software. Our intention is to apply the notion of components, component frameworks and reflection ubiquitously, thus accommodating all the different elements that comprise a programmable networking system

    Far Ultraviolet Spectroscopic Explorer Observations of a Supernova Remnant in the Line of Sight to HD 5980 in the Small Magellanic Cloud

    Get PDF
    We report a detection of far ultraviolet absorption from the supernova remnant SNR 0057 - 7226 in the Small Magellanic Cloud (SMC). The absorption is seen in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of the LBV/WR star HD 5980. Absorption from O VI 1032 and C III 977 is seen at a velocity of +300 km/s with respect to the Galactic absorption lines, +170 km/s with respect to the SMC absorption. The O VI 1038 line is contaminated by H_2 absorption, but is present. These lines are not seen in the FUSE spectrum of Sk80, only ~1' (~17 pc) away from HD 5980. No blue-shifted O VI 1032 absorption from the SNR is seen in the FUSE spectrum. The O VI 1032 line in the SNR is well described by a Gaussian with FWHM=75 km/s. We find log N(O VI)=14.33-14.43, which is roughly 50% of the rest of the O VI column in the SMC (excluding the SNR) and greater than the O VI column in the Milky Way halo along this sight line. The N(C IV)/N(O VI) ratio for the SNR absorption is in the range of 0.12-0.17, similar to the value seen in the Milky Way disk, and lower than the halo value, supporting models in which SNRs produce the highly ionized gas close to the plane of the Galaxy, while other mechanisms occur in the halo. The N(C IV)/N(O VI) ratio is also lower than the SMC ratio along this sight line, suggesting that other mechanisms contribute to the creation of the global hot ionized medium in the SMC. The O VI, C IV, and Si IV apparent column density profiles suggest the presence of a multi-phase shell followed by a region of higher temperature gas.Comment: 7 pages, 3 figures, 2 tables, uses emulateapj5.sty. Accepted for publication in ApJ Letter

    Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Get PDF
    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources

    The use of ERTS-1 multispectral imagery for crop identification in a semi-arid climate

    Get PDF
    Crop identification using multispectral satellite imagery and multivariate pattern recognition was used to identify wheat accurately in Greeley County, Kansas. A classification accuracy of 97 percent was found for wheat and the wheat estimate in hectares was within 5 percent of the USDA's Statistical Reporting Service estimate for 1973. The multispectral response of cotton and sorghum in Texas was not unique enough to distinguish between them nor to separate them from other cultivated crops
    corecore