6,309 research outputs found

    Improved I-V characteristics of SiC MOSFETs by TCE thermal gate oxidation

    Get PDF
    The effects of TCE (trichloroethylene) thermal gate oxidation on the electrical characteristics of SiC MOSFETs are investigated. It is found that TCE thermal gate oxidation can improve the I d-V d characteristics, increase the field-effect mobility, and reduce the threshold voltage and sub-threshold slope of the devices. The better device characteristics are believed to be attributed to the TCE-induced reductions of charges in the gate oxide and traps at the SiO/SiO 2 interface, and also to the gettering of charged impurities and reduction of physical defects by the chlorine incorporated in the gate oxide. ©2005 IEEE.published_or_final_versio

    Kinetics of thermal oxidation of 6H silicon carbide in oxygen plus trichloroethylene

    Get PDF
    In this work, the behaviors of the trichloroethylene (TCE) thermal oxidation of 6H silicon carbide (SiC) are investigated. The oxide growth of 6H SiC under different TCE concentrations (ratios of TCE to O2) follows the linear-parabolic oxidation law derived for silicon oxidation by Deal and Grove, J. Appl. Phys., 36 (1965). The oxidation rate with TCE is much higher than that without TCE and strongly depends on the TCE ratio in addition to oxidation temperature and oxidation time. The increase in oxidation rate induced by TCE is between 2.7 and 67% for a TCE ratio of 0.001-0.2 and a temperature of 1000-1150°C. Generally, the oxidation rate increases quickly with the TCE ratio for a TCE ratio less than 0.05 and then gradually saturates for a ratio larger than 0.05. The activation energy EB/A of the TCE oxidation for the TCE ratio range of 0.001-0.2 is 1.04-1.05 eV, which is a little larger than the 1.02 eV of dry oxidation. A two-step model for the TCE oxidation is also proposed to explain the experimental results. The model points out that in the SiC oxidation with TCE, the products (H2O and Cl2) of the reaction between TCE and O2 can speed up the oxidation, and hence, the oxidation rate is highly sensitive to the TCE ratio. © 2005 The Electrochemical Society. All rights reserved.published_or_final_versio

    A synthetic electric force acting on neutral atoms

    Full text link
    Electromagnetism is a simple example of a gauge theory where the underlying potentials -- the vector and scalar potentials -- are defined only up to a gauge choice. The vector potential generates magnetic fields through its spatial variation and electric fields through its time-dependence. We experimentally produce a synthetic gauge field that emerges only at low energy in a rubidium Bose-Einstein condensate: the neutral atoms behave as charged particles do in the presence of a homogeneous effective vector potential. We have generated a synthetic electric field through the time dependence of an effective vector potential, a physical consequence even though the vector potential is spatially uniform

    Impact of calcium on salivary α-amylase activity, starch paste apparent viscosity and thickness perception

    Get PDF
    Thickness perception of starch-thickened products during eating has been linked to starch viscosity and salivary amylase activity. Calcium is an essential cofactor for α-amylase and there is anecdotal evidence that adding extra calcium affects amylase activity in processes like mashing of beer. The aims of this paper were to (1) investigate the role of salivary calcium on α-amylase activity and (2) to measure the effect of calcium concentration on apparent viscosity and thickness perception when interacting with salivary α-amylase in starch-based samples. α-Amylase activity in saliva samples from 28 people was assessed using a typical starch pasting cycle (up to 95 °C). The activity of the enzyme (as measured by the change in starch apparent viscosity) was maintained by the presence of calcium, probably by protecting the enzyme from heat denaturation. Enhancement of α-amylase activity by calcium at 37 °C was also observed although to a smaller extent. Sensory analysis showed a general trend of decreased thickness perception in the presence of calcium, but the result was only significant for one pair of samples, suggesting a limited impact of calcium enhanced enzyme activity on perceived thickness

    Interleukin-1ÎČ sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1ÎČ (IL-1ÎČ). We have also shown the primary cilium elongates in response to IL-1ÎČ exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1ÎČ-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver

    Get PDF
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver

    Low penetrance of retinoblastoma for p.V654L mutation of the RB1 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinoblastoma is caused by compound heterozygosity or homozygosity of retinoblastoma gene (<it>RB1</it>) mutations. In germline retinoblastoma, mutations in the <it>RB1 </it>gene predispose individuals to increased cancer risks during development. These mutations segregate as autosomal dominant traits with high penetrance (90%).</p> <p>Methods</p> <p>We screened 30 family members from one family using high resolution melting assay and DNA direct sequencing for mutations in the <it>RB1 </it>gene. We evaluate the phenotype and penetrance of germline mutations of the <it>RB1 </it>gene in a large Taiwanese family.</p> <p>Results</p> <p>The molecular analysis and clinical details of this family showed phenotypic variability associated with the p.V654L mutation in exon 19 of the <it>RB1 </it>gene in 11 family members. The phenotype varied from asymptomatic to presence of a unilateral tumor. Only four individuals (2 males and 2 females) developed unilateral retinoblastoma, which resulted in calculated low penetrance of 36% (4/11). The four individuals with retinoblastoma were diagnosed before the age of three years. None of their relatives exhibited variable severity or bilateral retinoblastoma.</p> <p>Conclusions</p> <p>The diseased-eye ratio for this family was 0.36, which is lower than current estimates. This suggests that the <it>RB1 </it>p.V654L mutation is a typical mutation associated with low penetrance.</p

    Rings in the Solar System: a short review

    Full text link
    Rings are ubiquitous around giant planets in our Solar System. They evolve jointly with the nearby satellite system. They could form either during the giant planet formation process or much later, as a result of large scale dynamical instabilities either in the local satellite system, or at the planetary scale. We review here the main characteristics of rings in our solar system, and discuss their main evolution processes and possible origin. We also discuss the recent discovery of rings around small bodies.Comment: Accepted for the Handbook of Exoplanet

    Long-term effect of respiratory training for chronic obstructive pulmonary disease patients at an outpatient clinic: a randomised controlled trial

    Get PDF
    Objective: To assess the effect of respiratory training (RT ) on lung function, activity tolerance and acute exacerbation frequency with chronic obstructive pulmonary disease (COPD). Design: A randomised controlled trial. Setting: Outpatient clinic and home of the COPD patients, Zhengzhou City, China. Subjects: Sixty participants with COPD were randomised into two groups: an intervention group ( n = 30) which received the RT in self-management and a control group ( n = 30) that received an education program during the study. Intervention: Pulmonary function, activity tolerance and frequency of acute exacerbation of these COPD patients were evaluated before and after the program. The intervention and control programs were delivered at monthly out - patient clinic visits over a period of 12 months. The pulmonary rehabilitation (PR) program was conducted by a physiotherapist (who delivered RT to the participant over a minimum of 1 h per visit) for the intervention group, whereas the control group received routine health education provided by physiotherapists. The intervention group patients were then instructed to perform exercises at home as taught in the RT at least 5 days per week at home. Results: After 12 months of RT, the lung function and the activity tolerance of the COPD patients in the intervention group were significantly improved and the exacerbation frequency was also decreased. Conclusion: Long-term RT can improve lung function and activity tolerance while decreasing the frequency of acute exacerbation for COPD patient

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure
    • 

    corecore