137 research outputs found

    Combined use of maxillomandibular swing approach and neurosurgical ultrasonic aspirator in the management of extensive clival chordoma: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Chordoma is a rare malignant tumour with an incidence of metastasis of less than 10 percent. Usually arising from clivus its posterior extension may involve the brainstem before presenting as nasal mass and obstruction. Surgery is the main mode of treatment with adjuvant radiotherapy. However surgery is rarely possible for a large intracranial lesion.</p> <p>Case presentation</p> <p>We report the case of an adolescent patient with a chordoma extending posteriorly to the brainstem and anteriorly to the nasopharynx and managed by the combination of resection using a maxillomandibular swing approach and the use of a neurosurgical ultrasonic aspirator.</p> <p>Conclusion</p> <p>Maxillomandibular swing approach provides good access for large nasopharyngeal tumour extending brainstem area.</p

    Cell culture-based analysis of postsynaptic membrane assembly in muscle cells

    Get PDF
    We report a method for studying postsynaptic membrane assembly utilizing the replating of aneural cultures of differentiated skeletal muscle cells onto laminin-coated surfaces. A significant limitation to the current cell culturebased approaches has been their inability to recapitulate the multistage surface acetylcholine receptor (AChR) redistribution events that produce complex AChR clusters found at the intact neuromuscular junction (NMJ). By taking advantage of the ability of substrate laminin to induce advanced maturation of AChR aggregates on the surface of myotubes, we have developed a secondary-plating method that allows more precise analysis of the signaling events connecting substrate laminin stimulation to complex AChR cluster formation. We validate the utility of this method for biochemical and microscopy studies by demonstrating the roles of RhoGTPases in substrate laminin-induced complex cluster assembly

    Role of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ54–σS sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis

    Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gestational diabetes mellitus (GDM) is a form of diabetes that occurs during pregnancy. GDM is a well known risk factor for foetal overgrowth, termed macrosomia which is influenced by maternal hypergycemia and endocrine status through placental circulation. The study was undertaken to investigate the implication of growth factors and their receptors in GDM and macrosomia, and to discuss the role of the materno-foeto-placental axis in the <it>in-utero </it>regulation of foetal growth.</p> <p>Methods</p> <p>30 women with GDM and their 30 macrosomic babies (4.75 ± 0.15 kg), and 30 healthy age-matched pregnant women and their 30 newborns (3.50 ± 0.10 kg) were recruited in the present study. Serum concentrations of GH and growth factors, <it>i.e</it>., IGF-I, IGF-BP3, FGF-2, EGF and PDGF-B were determined by ELISA. The expression of mRNA encoding for GH, IGF-I, IGF-BP3, FGF-2, PDGF-B and EGF, and their receptors, <it>i.e</it>., GHR, IGF-IR, FGF-2R, EGFR and PDGFR-β were quantified by using RT-qPCR.</p> <p>Results</p> <p>The serum concentrations of IGF-I, IGF-BP3, EGF, FGF-2 and PDGF-B were higher in GDM women and their macrosomic babies as compared to their respective controls. The placental mRNA expression of the growth factors was either upregulated (FGF-2 or PDGF-B) or remained unaltered (IGF-I and EGF) in the placenta of GDM women. The mRNA expression of three growth factor receptors, <it>i.e</it>., IGF-IR, EGFR and PDGFR-β, was upregulated in the placenta of GDM women. Interestingly, serum concentrations of GH were downregulated in the GDM women and their macrosomic offspring. Besides, the expression of mRNAs encoding for GHR was higher, but that encoding for GH was lower, in the placenta of GDM women than control women.</p> <p>Conclusions</p> <p>Our results demonstrate that growth factors might be implicated in GDM and, in part, in the pathology of macrosomia via materno-foeto-placental axis.</p

    A Complete Sequence and Transcriptomic Analyses of Date Palm (Phoenix dactylifera L.) Mitochondrial Genome

    Get PDF
    Based on next-generation sequencing data, we assembled the mitochondrial (mt) genome of date palm (Phoenix dactylifera L.) into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp) over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast)-derived (10.3% with respect to the whole genome length) and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower) showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry), and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters–18S-5S rRNA, rps3-rpl16 and nad3-rps12–in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms

    Expanding Paramedicine in the Community (EPIC): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: The incidence of chronic diseases, including diabetes mellitus (DM), heart failure (HF) and chronic obstructive pulmonary disease (COPD) is on the rise. The existing health care system must evolve to meet the growing needs of patients with these chronic diseases and reduce the strain on both acute care and hospital-based health care resources. Paramedics are an allied health care resource consisting of highly-trained practitioners who are comfortable working independently and in collaboration with other resources in the out-of-hospital setting. Expanding the paramedic’s scope of practice to include community-based care may decrease the utilization of acute care and hospital-based health care resources by patients with chronic disease. METHODS/DESIGN: This will be a pragmatic, randomized controlled trial comparing a community paramedic intervention to standard of care for patients with one of three chronic diseases. The objective of the trial is to determine whether community paramedics conducting regular home visits, including health assessments and evidence-based treatments, in partnership with primary care physicians and other community based resources, will decrease the rate of hospitalization and emergency department use for patients with DM, HF and COPD. The primary outcome measure will be the rate of hospitalization at one year. Secondary outcomes will include measures of health system utilization, overall health status, and cost-effectiveness of the intervention over the same time period. Outcome measures will be assessed using both Poisson regression and negative binomial regression analyses to assess the primary outcome. DISCUSSION: The results of this study will be used to inform decisions around the implementation of community paramedic programs. If successful in preventing hospitalizations, it has the ability to be scaled up to other regions, both nationally and internationally. The methods described in this paper will serve as a basis for future work related to this study. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02034045. Date: 9 January 2014. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1745-6215-15-473) contains supplementary material, which is available to authorized users

    Sickness behaviour pushed too far – the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma

    Get PDF
    Certain distinctive components of the severe systemic inflammatory syndrome are now well-recognized to be common to malaria, sepsis, viral infections, and post-trauma illness. While their connection with cytokines has been appreciated for some time, the constellation of changes that comprise the syndrome has simply been accepted as an empirical observation, with no theory to explain why they should coexist. New data on the effects of the main pro-inflammatory cytokines on the genetic control of sickness behaviour can be extended to provide a rationale for why this syndrome contains many of its accustomed components, such as reversible encephalopathy, gene silencing, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia. It is thus proposed that the pattern of pathology that comprises much of the systemic inflammatory syndrome occurs when one of the usually advantageous roles of pro-inflammatory cytokines – generating sickness behaviour by moderately repressing genes (Dbp, Tef, Hlf, Per1, Per2 and Per3, and the nuclear receptor Rev-erbα) that control circadian rhythm – becomes excessive. Although reversible encephalopathy and gene silencing are severe events with potentially fatal consequences, they can be viewed as having survival advantages through lowering energy demand. In contrast, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia may best be viewed as unfortunate consequences of extreme repression of these same genetic controls when the pro-inflammatory cytokines that cause sickness behaviour are produced excessively. As well as casting a new light on the previously unrationalized coexistence of these aspects of systemic inflammatory diseases, this concept is consistent with the case for a primary role for inflammatory cytokines in their pathogenesis across this range of diseases

    Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    Get PDF
    Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material
    corecore