31 research outputs found

    Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells

    Get PDF
    Cyr61 has been reported to participate in the development and progression of various cancers; however, its role in prostate cancer (PCa) still remains poorly understood. In this study, we explored the function of Cyr61 in a series of malignant PCa cell lines, including LnCap, Du145, and PC3. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays demonstrated that Cyr61 was essential for the proliferation of PCa cells. Soft agar assay and xenograft analysis showed that downregulation of Cyr61 suppressed the tumorigenicity of Du145 cells both in vitro and in vivo. Either silencing the cellular Cyr61 by RNA interference or neutralising the endogenous Cyr61 by antibody inhibited the migration of Du145 cells. In contrast, purified protein of Cyr61 promoted the migration of LnCap cells in a dose-dependent manner. These results suggested that Cyr61 was involved in the migration of PCa cells. We also observed the accumulation of mature focal adhesion complexes associated with the impaired migration through Cyr61 downregulation. Also, further studies showed that Cyr61 regulated the level of activated Rac1 as well as its downstream targets, including phosphorylated JNK, E-cadherin, and p27kip1, which are key molecules involved in cell growth, migration, and invasion. The in vivo mouse tail vein injection experiment revealed that Cyr61 affected the metastatic capacity of Du145 cells, suggesting that Cyr61 was required for prostate tumour metastasis. Altogether, our results demonstrated that Cyr61 played an important role in the tumorigenicity and metastasis of PCa cells, which will benefit the development of therapeutic strategy for PCas

    Proteins on the catwalk: modelling the structural domains of the CCN family of proteins

    Get PDF
    The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach

    Biological Function and Molecular Mapping of M Antigen in Yeast Phase of Histoplasma capsulatum

    Get PDF
    Histoplasmosis, due to the intracellular fungus Histoplasma capsulatum, can be diagnosed by demonstrating the presence of antibodies specific to the immunodominant M antigen. However, the role of this protein in the pathogenesis of histoplasmosis has not been elucidated. We sought to structurally and immunologically characterize the protein, determine yeast cell surface expression, and confirm catalase activity. A 3D-rendering of the M antigen by homology modeling revealed that the structures and domains closely resemble characterized fungal catalases. We generated monoclonal antibodies (mAbs) to the protein and determined that the M antigen is present on the yeast cell surface and in cell wall/cell membrane preparations. Similarly, we found that the majority of catalase activity was in extracts containing fungal surface antigens and that the M antigen is not significantly secreted by live yeast cells. The mAbs also identified unique epitopes on the M antigen. The localization of the M antigen to the cell surface of H. capsulatum yeast and the characterization of the protein's major epitopes have important implications since it demonstrates that although the protein may participate in protecting the fungus against oxidative stress it is also accessible to host immune cells and antibody

    Superior Mesenteric Artery-Duodenal Fistula Secondary to a Gunshot Wound

    No full text
    Arterioenteric fistulas are a rare cause of massive gastrointestinal hemorrhage. We present a patient who developed a fistula between a middle colic artery pseudoaneurysm, a proximal branch of the superior mesenteric artery (SMA), and the third part of the duodenum 2 weeks after a self-inflicted gunshot wound to the abdomen. The patient's presentation, evaluation, treatment, and prognosis are discussed. All prior published cases of SMA-duodenal fistulas are reviewed

    It’s a knockout: CCN3 suppresses neointimal thickening

    No full text
    The role of CCN proteins in vivo is only just becoming understood. A prototypical member of the CCN family, CCN3 suppresses proliferation. In a study in press, Shimoyama and colleagues show that mice lacking CCN3 have a hyperproliferative response to vascular injury. These data, along with other recent observations, suggest that CCN3 may represent a novel therapy for hyperproliferative diseases

    CCN3/NOV small interfering RNA enhances fibrogenic gene expression in primary hepatic stellate cells and cirrhotic fat storing cell line CFSC

    No full text
    Nephroblastoma overexpressed gene encodes a matricellular protein (CCN3/NOV) of the CCN family, comprising CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). CCN proteins are involved in the regulation of mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration in multiple cell types. Compared to CCN2/CTGF, known as a profibrotic protein, the biological role of CCN3/NOV in liver fibrosis remains obscure. In this study we showed ccn3/nov mRNA to increase dramatically following hepatic stellate cell activation, reaching peak levels in fully transdifferentiated myofibroblasts. In models of experimental hepatic fibrosis, CCN3/NOV increased significantly at the mRNA and protein levels. CCN3/NOV was found mainly in non-parenchymal cells along the areas of tissue damage and repair. In the bile-duct ligation model, CCN3/NOV was localized mainly along portal tracts, while the repeated application of carbon tetrachloride resulted in CCN3/NOV expression mainly in the centrilobular areas. In contrast to CCN2/CTGF, the profibrotic cytokines platelet-derived growth factor-B and -D as well as transforming growth factor-β suppressed CCN3/NOV expression. In vitro, CCN3/NOV siRNA attenuated migration in the cirrhotic fat storing cell line CFSC well in line with in vivo findings that various types of cells expressing CCN3/NOV migrate into the area of tissue damage and regeneration. The suppression of CCN3/NOV enhanced expression of profibrotic marker proteins, such as α-smooth muscle actin, collagen type I, fibronectin, CCN2/CTGF and TIMP-1 in primary rat hepatic stellate cells and in CFSC. We further found that adenoviral overexpression of CCN2/CTGF suppressed CCN3/NOV expression, while the overexpression of CCN3/NOV as well as the suppression of CCN3/NOV by targeting siRNAs both resulted in enhanced CCN2/CTGF expression. These results indicate the complexity of CCN actions that are far beyond the classic Yin/Yang interplay

    CCN2 expression and localization in melanoma cells

    No full text
    The matricellular protein connective tissue growth factor (CTGF, CCN2) is overexpressed in several forms of cancer and may represent a novel target in anti-cancer therapy. However, whether CCN2 is expressed in melanoma cells is unknown. The highly metastatic murine melanoma cell line B16(F10) was used for our studies. Real time polymerase chain reaction analysis was used to detect mRNA expression of CCN1, CCN2, CCN3 and CCN4 in Western blot and immunofluorescence analyses were used to detect CCN2 protein. Inhibitors of signal transduction cascades were used to probe the mechanism underlying CCN2 expression in B16(F10) cells. CCN2 was expressed in B16(F10) cells, and was reduced by the FAK/src inhibitor PP2 and the MEK/ERK inhibitor U0126 indicating that CCN2 acts downstream of these pathways in B16(F10) murine melanoma cells. Expression of CCN1, CCN3 and CCN4 was not reduced by PP2 or U0126; in fact, expression of CCN4 mRNA was elevated by PP2 or U0126 treatment. To our surprise, CCN2 protein was detected in the nuclei of B16(F10) cells, and was undetectable in the cytoplasm. CCN2 was expressed in B16(F10) melanoma cells, adding to the list of cancer cells in which CCN2 is expressed. Of the CCN family members tested, only CCN2 is downstream of the highly oncogenic MEK/ERK pathway. CCN2 should be further evaluated for a possible role in melanoma growth and progression
    corecore