35 research outputs found
Quantum control of proximal spins using nanoscale magnetic resonance imaging
Quantum control of individual spins in condensed matter systems is an
emerging field with wide-ranging applications in spintronics, quantum
computation, and sensitive magnetometry. Recent experiments have demonstrated
the ability to address and manipulate single electron spins through either
optical or electrical techniques. However, it is a challenge to extend
individual spin control to nanoscale multi-electron systems, as individual
spins are often irresolvable with existing methods. Here we demonstrate that
coherent individual spin control can be achieved with few-nm resolution for
proximal electron spins by performing single-spin magnetic resonance imaging
(MRI), which is realized via a scanning magnetic field gradient that is both
strong enough to achieve nanometric spatial resolution and sufficiently stable
for coherent spin manipulations. We apply this scanning field-gradient MRI
technique to electronic spins in nitrogen-vacancy (NV) centers in diamond and
achieve nanometric resolution in imaging, characterization, and manipulation of
individual spins. For NV centers, our results in individual spin control
demonstrate an improvement of nearly two orders of magnitude in spatial
resolution compared to conventional optical diffraction-limited techniques.
This scanning-field-gradient microscope enables a wide range of applications
including materials characterization, spin entanglement, and nanoscale
magnetometry.Comment: 7 pages, 4 figure
Enhanced Single Photon Emission from a Diamond-Silver Aperture
We have developed a scalable method for coupling single color centers in
diamond to plasmonic resonators and demonstrated Purcell enhancement of the
single photon emission rate of nitrogen-vacancy (NV) centers. Our structures
consist of single nitrogen-vacancy (NV) center-containing diamond nanoposts
embedded in a thin silver film. We have utilized the strong plasmon resonances
in the diamond-silver apertures to enhance the spontaneous emission of the
enclosed dipole. The devices were realized by a combination of ion implantation
and top-down nanofabrication techniques, which have enabled deterministic
coupling between single NV centers and the plasmonic modes for multiple devices
in parallel. The plasmon-enhanced NV centers exhibited over six-fold
improvements in spontaneous emission rate in comparison to bare nanoposts and
up to a factor of 3.6 in radiative lifetime reduction over bulk samples, with
comparable increases in photon counts. The hybrid diamond-plasmon system
presented here could provide a stable platform for the implementation of
diamond-based quantum information processing and magnetometry schemes.Comment: 16 pages, 4 figure
Superconducting single photon detectors integrated with diamond nanophotonic circuits
Photonic quantum technologies promise to repeat the success of integrated
nanophotonic circuits in non-classical applications. Using linear optical
elements, quantum optical computations can be performed with integrated optical
circuits and thus allow for overcoming existing limitations in terms of
scalability. Besides passive optical devices for realizing photonic quantum
gates, active elements such as single photon sources and single photon
detectors are essential ingredients for future optical quantum circuits.
Material systems which allow for the monolithic integration of all components
are particularly attractive, including III-V semiconductors, silicon and also
diamond. Here we demonstrate nanophotonic integrated circuits made from high
quality polycrystalline diamond thin films in combination with on-chip single
photon detectors. Using superconducting nanowires coupled evanescently to
travelling waves we achieve high detection efficiencies up to 66 % combined
with low dark count rates and timing resolution of 190 ps. Our devices are
fully scalable and hold promise for functional diamond photonic quantum
devices.Comment: 28 pages, 5 figure
Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing
In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness
High Purcell factor generation of indistinguishable on-chip single photons
On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot–photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates