56 research outputs found
Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia
<p>Abstract</p> <p>Background</p> <p>Many critical maturational processes take place in the human brain during postnatal development. In particular, the prefrontal cortex does not reach maturation until late adolescence and this stage is associated with substantial white matter volume increases. Patients with schizophrenia and other major psychiatric disorders tend to first present with overt symptoms during late adolescence/early adulthood and it has been proposed that this developmental stage represents a "window of vulnerability".</p> <p>Methods</p> <p>In this study we used whole genome microarrays to measure gene expression in post mortem prefrontal cortex tissue from human individuals ranging in age from 0 to 49 years. To identify genes specifically altered in the late adolescent period, we applied a template matching procedure. Genes were identified which showed a significant correlation to a template showing a peak of expression between ages 15 and 25.</p> <p>Results</p> <p>Approximately 2000 genes displayed an expression pattern that was significantly correlated (positively or negatively) with the template. In the majority of cases, these genes in fact reached a plateau during adolescence with only subtle changes thereafter. These include a number of genes previously associated with schizophrenia including the susceptibility gene neuregulin 1 (NRG1). Functional profiling revealed peak expression in late adolescence for genes associated with energy metabolism and protein and lipid synthesis, together with decreases for genes involved in glutamate and neuropeptide signalling and neuronal development/plasticity. Strikingly, eight myelin-related genes previously found decreased in schizophrenia brain tissue showed a peak in their expression levels in late adolescence, while the single myelin gene reported increased in patients with schizophrenia was decreased in late adolescence.</p> <p>Conclusion</p> <p>The observed changes imply that molecular mechanisms critical for adolescent brain development are disturbed in schizophrenia patients.</p
Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia
Novel animal models for studying complex brain disorders: BAC-driven miRNA-mediated in vivo silencing of gene expression
In schizophrenia, glutamic acid decarboxylase 1 (GAD1) disturbances are robust, consistently observed, cell-type specific and represent a core feature of the disease. In addition, neuropeptide Y (NPY), which is a phenotypic marker of a sub-population of GAD1-containing interneurons, has shown reduced expression in the prefrontal cortex in subjects with schizophrenia, suggesting that dysfunction of the NPY+ cortical interneuronal sub-population might be a core feature of this devastating disorder. However, modeling gene expression disturbances in schizophrenia in a cell type-specific manner has been extremely challenging. To more closely mimic these molecular and cellular human post-mortem findings, we generated a transgenic mouse in which we downregulated GAD1 mRNA expression specifically in NPY+ neurons. This novel, cell type-specific in vivo system for reducing gene expression uses a bacterial artificial chromosome (BAC) containing the NPY promoter-enhancer elements, the reporter molecule (eGFP) and a modified intron containing a synthetic microRNA (miRNA) targeted to GAD1. The animals of isogenic strains are generated rapidly, providing a new tool for better understanding the molecular disturbances in the GABAergic system observed in complex neuropsychiatric disorders such as schizophrenia. In the future, because of the small size of the silencing miRNAs combined with our BAC strategy, this method may be modified to allow generation of mice with simultaneous silencing of multiple genes in the same cells with a single construct, and production of splice-variant-specific knockdown animals
Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.
Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology
Adolescent Brain Development and the Risk for Alcohol and Other Drug Problems
Dynamic changes in neurochemistry, fiber architecture, and tissue composition occur in the adolescent brain. The course of these maturational processes is being charted with greater specificity, owing to advances in neuroimaging and indicate grey matter volume reductions and protracted development of white matter in regions known to support complex cognition and behavior. Though fronto-subcortical circuitry development is notable during adolescence, asynchronous maturation of prefrontal and limbic systems may render youth more vulnerable to risky behaviors such as substance use. Indeed, binge-pattern alcohol consumption and comorbid marijuana use are common among adolescents, and are associated with neural consequences. This review summarizes the unique characteristics of adolescent brain development, particularly aspects that predispose individuals to reward seeking and risky choices during this phase of life, and discusses the influence of substance use on neuromaturation. Together, findings in this arena underscore the importance of refined research and programming efforts in adolescent health and interventional needs
- …