7,717 research outputs found

    A study of the 3.3 and 3.4 μm emission features in proto-planetary nebulae

    Get PDF
    Medium-resolution spectra have been obtained of seven carbon-rich proto - planetary nebulae (PPNs) and one young planetary nebula from 3.2 to 3.8 μm, an interval containing the prominent hydrocarbon C - H stretches at 3.3 and 3.4 μm due to aromatic and aliphatic structures, respectively. The 3.3 μm feature is newly identified in IRAS 23304+6147, 22223+4327, and 06530-0213 and is confirmed in Z02229+6208. Three of the PPNs emit in the 3.4 μm feature, two of these being new identifications, IRAS 20000+3239 and 01005+7910, with two others showing possible detections. The 3.3 and 3.4 μm emission features in IRAS 22272+5435 are seen in the nebula offset from the star but not at the position of the central star, consistent with the 2003 results of Goto et al. A similar distribution is seen for the 3.3 μm feature in IRAS 22223+4327. All of the PPNs except IRAS 22272+5435 show Class A 3 μm emission features. These observations, when combined with those of the approximately equal number of other carbon-rich PPNs previously observed, demonstrate that there are large differences in the 3 μm emission bands, even for PPNs with central stars of similar spectral type, and thus that the behavior of the bands does not depend solely on spectral type. We also investigated other possible correlations to help explain these differences. These differences do not depend on the C/O value, since the Class B sources fall within the C/O range found for Class A. All of these 3.3 μm sources also show C 2 absorption and 21 μm emission features, except IRAS 01005+7910, which is the hottest source at B0. © 2007. The American Astronomical Society. All rights reserved.published_or_final_versio

    Helicases as antiviral drug targets.

    Get PDF
    1. We have demonstrated for the first time that the helicase of a ribonucleic acid virus, the SARS coronavirus (SARS-CoV), is a valid target for drug development. 2. Using high throughput screen and chemical synthesis, several lead compounds targeting the SARS-CoV helicase have been identified. We have shown that these compounds can inhibit SARS-CoV helicase activity and viral growth in cell culture systems. These compounds can potentially be used to target other viruses.published_or_final_versio

    Nitrous Oxide Production in Co-Versus Counter-Diffusion Nitrifying Biofilms

    Get PDF
    For the application of biofilm processes, a better understanding of nitrous oxide (N 2 O) formation within the biofilm is essential for design and operation of biofilm reactors with minimized N 2 O emissions. In this work, a previously established N 2 O model incorporating both ammonia oxidizing bacteria (AOB) denitrification and hydroxylamine (NH 2 OH) oxidation pathways is applied in two structurally different biofilm systems to assess the effects of co-and counter-diffusion on N 2 O production. It is demonstrated that the diffusion of NH 2 OH and oxygen within both types of biofilms would form an anoxic layer with the presence of NH 2 OH and nitrite (), which would result in a high N 2 O production via AOB denitrification pathway. As a result, AOB denitrification pathway is dominant over NH 2 OH oxidation pathway within the co-and counter-diffusion biofilms. In comparison, the co-diffusion biofilm may generate substantially higher N 2 O than the counter-diffusion biofilm due to the higher accumulation of NH 2 OH in co-diffusion biofilm, especially under the condition of high-strength ammonium influent (500 mg N/L), thick biofilm depth (300 μm) and moderate oxygen loading (∼1-∼4 m 3 /d). The effect of co-and counter-diffusion on N 2 O production from the AOB biofilm is minimal when treating low-strength nitrogenous wastewater

    Nitrous oxide production in a granule-based partial nitritation reactor: A model-based evaluation

    Full text link
    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH 2 OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR

    Simulation and experimental study of rheological properties of CeO2 – water nanofluid

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Metal oxide nanoparticles offer great merits over controlling rheological, thermal, chemical and physical properties of solutions. The effectiveness of a nanoparticle to modify the properties of a fluid depends on its diffusive properties with respect to the fluid. In this study, rheological properties of aqueous fluids (i.e. water) were enhanced with the addition of CeO2 nanoparticles. This study was characterized by the outcomes of simulation and experimental results of nanofluids. The movement of nanoparticles in the fluidic media was simulated by a large-scale molecular thermal dynamic program (i.e. LAMMPS). The COMPASS force field was employed with smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD). However, this study develops the understanding of how the rheological properties are affected due to the addition of nanoparticles in a fluid and the way DPD and SPH can be used for accurately estimating the rheological properties with Brownian effect. The rheological results of the simulation were confirmed by the convergence of the stress autocorrelation function, whereas experimental properties were measured using a rheometer. These rheological values of simulation were obtained and agreed within 5 % of the experimental values; they were identified and treated with a number of iterations and experimental tests. The results of the experiment and simulation show that 10 % CeO2 nanoparticles dispersion in water has a viscosity of 2.0–3.3 mPasPeer reviewedFinal Published versio

    Molecular Theory of Hydrophobic Effects: ``She is too mean to have her name repeated.''

    Get PDF
    This paper reviews the molecular theory of hydrophobic effects relevant to biomolecular structure and assembly in aqueous solution. Recent progress has resulted in simple, validated molecular statistical thermodynamic theories and clarification of confusing theories of decades ago. Current work is resolving effects of wider variations of thermodynamic state, e.g. pressure denaturation of soluble proteins, and more exotic questions such as effects of surface chemistry in treating stability of macromolecular structures in aqueous solutionComment: submitted to Ann. Rev. Phys. Chem., 31 pages, 245 references, 2 figure

    Modeling aerobic biotransformation of vinyl chloride by vinyl chloride-assimilating bacteria, methanotrophs and ethenotrophs

    Full text link
    © 2017 Elsevier B.V. Recent studies have investigated the potential of enhanced groundwater Vinyl Chloride (VC) remediation in the presence of methane and ethene through the interactions of VC-assimilating bacteria, methanotrophs and ethenotrophs. In this study, a mathematical model was developed to describe aerobic biotransformation of VC in the presence of methane and ethene for the first time. It examines the metabolism of VC by VC-assimilating bacteria as well as cometabolism of VC by both methanotrophs and ethenotrophs, using methane and ethene respectively, under aerobic conditions. The developed model was successfully calibrated and validated using experimental data from microcosms with different experimental conditions. The model satisfactorily describes VC, methane and ethene dynamics in all microcosms tested. Modeling results describe that methanotrophic cometabolism of ethene promotes ethenotrophic VC cometabolism, which significantly enhances aerobic VC degradation in the presence of methane and ethene. This model is expected to be a useful tool to support effective and efficient processes for groundwater VC remediation

    Learning environments research in English classrooms

    Get PDF
    Although learning environments research has thrived for decades in many countries and school subjects, English classroom environment research is still in its infancy. This article paves the way for expanding research on English classroom environments by (1) reviewing the limited past research in English classrooms and (2) reporting the first study of English learning environments in Singaporean primary schools. For a sample of 441 grade 6 students, past research in other subjects was replicated in that a modified version of the What Is Happening In this Class? questionnaire was cross-validated, classroom environment was found to vary with the determinants of student sex and ethnicity, and associations emerged between students’ attitudes and the nature of the classroom environment

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    Functional Analysis of a Dominant Negative Mutation of Interferon Regulatory Factor 5

    Get PDF
    BACKGROUND: Interferon regulatory factor (IRF) family members have been implicated as critical transcription factors that function in immune response, hematopoietic differentiation and cell growth regulation. Activation of IRF-5 results in the production of pro-inflammatory cytokines such as TNFalpha, IL6 and IL12p40, as well as type I interferons. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we identify a G202C (position relative to translation start codon) missense-mutation transcript of IRF-5 in transformed B and T cell lines, which were either infected or non-infected by viruses, and peripheral blood from ATL or CLL patients. The mutated transcript encodes a novel protein in which the sixty-eighth amino acid, Alanine, is substituted by Proline (IRF-5P68) in the DNA binding domain of IRF-5. IRF-5P68 phenotype results in a complete loss of its DNA-binding activity and functions as a dominant negative molecule through interacting with wild type IRF-5. Co-expression of IRF-5P68 inhibits MyD88-mediated IRF-5 transactivation. Moreover, Toll-like receptor (TLR)-dependent IL6 and IL12P40 production induced by lipopolysaccharide (LPS), R837 or CpG ODN 1826 was reduced in IRF-5 (P68) expressing cells as compared to the control cells. CONCLUSION: IRF-5P68 acts as a dominant negative regulator that interferes with IRF-5-mediated production of pro-inflammatory cytokines. The functional characterization of the novel IRF-5 mutant in transformed B and T cell lines and in ATL and CLL patients may lead to a better understanding of the role of these transcriptional regulators in hematopoietic malignancies
    • …
    corecore