16 research outputs found

    Detection of epithelial apoptosis in pelvic ileal pouches for ulcerative colitis and familial adenomatous polyposis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ileal pouch-anal anastomosis (IPAA) is the surgical procedure of choice for patients with refractory ulcerative colitis (UC) and for familial adenomatous polyposis (FAP) with many rectal polyps. Pouchitis is one of the more frequent complications after IPAA in UC patients; however, it is rare in FAP.</p> <p>Objective</p> <p>Evaluate pro-apoptotic activity in endoscopically and histological normal mucosa of the ileal pouch in patients with UC and FAP.</p> <p>Methods</p> <p>Eighteen patients (nine with UC and nine with FAP) with J pouch after total rectocolectomy were studied. Biopsies were obtained from the mucosa of the pouch and from normal ileum. The specimens were snap-frozen and the expressions of Bax and Bcl-2 were determined by immunoblot of protein extracts and by immunohistochemistry analysis. FADD, Caspase-8, APAF-1 and Caspase-9 were evaluated by immunoprecipitation and immunoblot.</p> <p>Results</p> <p>Patients with UC had significantly higher protein levels of Bax and APAF-1, Caspase-9 than patients with FAP, but were similar to controls. The expressions of Bcl-2 and FADD, Caspase-8 were similar in the groups. Immunohistochemistry for Bax showed less intensity of immunoreactions in FAP than in UC and Controls. Bcl-2 immunostaining was similar among the groups.</p> <p>Conclusion</p> <p>Patients with FAP present lower levels of pro-apoptotic proteins in all methods applied, even in the absence of clinical and endoscopic pouchitis and dysplasia in the histological analysis. These findings may explain a tendency of up-regulation of apoptosis in UC patients, resulting in higher rates of progression to pouchitis in these patients, which could correlate with mucosal atrophy that occurs in inflamed tissue. However, FAP patients had low pro-apoptotic activity in the mucosa, and it could explain the tendency to low cell turn over and presence of adenomas in this syndrome.</p

    Cell motility: the integrating role of the plasma membrane

    Get PDF
    The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process

    Entretien sur l'extrême droit

    No full text
    info:eu-repo/semantics/publishe
    corecore