51 research outputs found

    miR-210: fine-tuning the hypoxic response

    Get PDF
    Hypoxia is a central component of the tumor microenvironment and represents a major source of therapeutic failure in cancer therapy. Recent work has provided a wealth of evidence that noncoding RNAs and, in particular, microRNAs, are significant members of the adaptive response to low oxygen in tumors. All published studies agree that miR-210 specifically is a robust target of hypoxia-inducible factors, and the induction of miR-210 is a consistent characteristic of the hypoxic response in normal and transformed cells. Overexpression of miR-210 is detected in most solid tumors and has been linked to adverse prognosis in patients with soft-tissue sarcoma, breast, head and neck, and pancreatic cancer. A wide variety of miR-210 targets have been identified, pointing to roles in the cell cycle, mitochondrial oxidative metabolism, angiogenesis, DNA damage response, and cell survival. Additional microRNAs seem to be modulated by low oxygen in a more tissue-specific fashion, adding another layer of complexity to the vast array of protein-coding genes regulated by hypoxia

    Neuromuscular fatigue induced by whole-body vibration exercise

    No full text
    The aim of this study was to examine the magnitude and the origin of neuromuscular fatigue induced by half-squat static whole-body vibration (WBV) exercise, and to compare it to a non-WBV condition. Nine healthy volunteers completed two fatiguing protocols (WBV and non-WBV, randomly presented) consisting of five 1-min bouts of static half-squat exercise with a load corresponding to 50 % of their individual body mass. Neuromuscular fatigue of knee and ankle muscles was investigated before and immediately after each fatiguing protocol. The main outcomes were maximal voluntary contraction (MVC) torque, voluntary activation, and doublet peak torque. Knee extensor MVC torque decreased significantly (P < 0.01) and to the same extent after WBV (-23 %) and non-WBV (-25 %), while knee flexor, plantar flexor, and dorsiflexor MVC torque was not affected by the treatments. Voluntary activation of knee extensor and plantar flexor muscles was unaffected by the two fatiguing protocols. Doublet peak torque decreased significantly and to a similar extent following WBV and non-WBV exercise, for both knee extensors (-25 %; P < 0.01) and plantar flexors (-7 %; P < 0.05). WBV exercise with additional load did not accentuate fatigue and did not change its causative factors compared to non-WBV half-squat resistive exercise in recreationally active subjects

    How insects survive the cold: molecular mechanisms - a review

    Get PDF
    Insects vary considerably in their ability to survive low temperatures. The tractability of these organisms to experimentation has lead to considerable physiology-based work investigating both the variability between species and the actual mechanisms themselves. This has highlighted a range of strategies including freeze tolerance, freeze avoidance, protective dehydration and rapid cold hardening, which are often associated with the production of specific chemicals such as antifreezes and polyol cryoprotectants. But we are still far from identifying the critical elements behind over-wintering success and how some species can regularly survive temperatures below -20°C. Molecular biology is the most recent tool to be added to the insect physiologist’s armoury. With the public availability of the genome sequence of model insects such as Drosophila and the production of custom-made molecular resources, such as EST libraries and microarrays, we are now in a position to start dissecting the molecular mechanisms behind some of these well-characterised physiological responses. This review aims to provide a state of the art snapshot of the molecular work currently being conducted into insect cold tolerance and the very interesting preliminary results from such studies, which provide great promise for the future
    corecore