6 research outputs found

    Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    Get PDF
    We investigate the role of AGN feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work which neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency is primarily due to the fact that the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the ICM and 3D ideal MHD simulations, we examine the role of a large-scale magnetic field which is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that, while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from tran- sitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for observed feedback in galaxy clusters

    Evolution of active galactic nuclei

    Full text link
    [Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of the AGN population hindered any attempt to derive cosmological parameters from AGN observations directly. Following a discussion of the state of the art in the study of AGN luminosity functions, we move on to discuss the "modern" view of AGN evolution, one in which a bigger emphasis is given to the physical relationships between the population of growing black holes and their environment. This includes observational and theoretical efforts aimed at constraining and understanding the evolution of scaling relations, as well as the resulting limits on the evolution of the SMBH mass function. Physical models of AGN feedback and the ongoing efforts to isolate them observationally are discussed next. Finally, we touch upon the problem of when and how the first black holes formed and the role of black holes in the high-redshift universe.Comment: 75 pages, 35 figures. Modified version of the chapter accepted to appear in "Planets, Stars and Stellar Systems", vol 6, ed W. Keel (www.springer.com/astronomy/book/978-90-481-8818-5). The number of references is limited upon request of the editors. Original submission to Springer: June 201

    The X-ray counterpart to the gravitational wave event GW 170817

    Get PDF
    A long-standing paradigm in astrophysics is that collisions- or mergers- of two neutron stars (NSs) form highly relativistic and collimated outflows (jets) powering gamma-ray bursts (GRBs) of short (< 2 s) duration. However, the observational support for this model is only indirect. A hitherto outstanding prediction is that gravitational wave (GW) events from such mergers should be associated with GRBs, and that a majority of these GRBs should be off-axis, that is, they should point away from the Earth. Here we report the discovery of the X-ray counterpart associated with the GW event GW170817. While the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow from freshly synthesized r-process material in the merger ejecta, known as kilonova, observations at X-ray and, later, radio frequencies exhibit the behavior of a short GRB viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short GRBs and GWs from NS mergers, and gives independent confirmation of the collimated nature of the GRB emission.Comment: 38 pages, 10 figures, Nature, in pres

    Observations and physics of prompt emission of gamma ray bursts

    No full text

    Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics

    No full text
    corecore