222 research outputs found

    Importance of dose-schedule of 5-aza-2'-deoxycytidine for epigenetic therapy of cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.</p> <p>Methods</p> <p>Clonogenic assays were performed on leukemic and tumor cell lines to evaluate the <it>in vitro </it>antineoplastic activity of DAC. The reactivation of TSGs and inhibition of DNA methylation by DAC were investigated by reverse transcriptase-PCR and Line-1 assays. The <it>in vivo </it>antineoplastic activity of DAC administered as an i.v. infusion was evaluated in mice with murine L1210 leukemia by measurement of survival time, and in mice bearing murine EMT6 mammary tumor by excision of tumor after chemotherapy for an <it>in vitro </it>clonogenic assay.</p> <p>Results</p> <p>Increasing the DAC concentration and duration of exposure produced a greater loss of clonogenicity for both human leukemic and tumor cell lines. The reactivation of the TSGs (<it>p57KIP2 </it>in HL-60 leukemic cells and <it>p16CDKN2A </it>in Calu-6 lung carcinoma cells) and the inhibition of global DNA methylation in HL-60 leukemic cells increased with DAC concentration. In mice with L1210 leukemia and in mice bearing EMT6 tumors, the antineoplastic action of DAC also increased with the dose. The plasma level of DAC that produced a very potent antineoplastic effect in mice with leukemia or solid tumors was > 200 ng/ml (> 1 μM).</p> <p>Conclusion</p> <p>We have shown that intensification of the DAC dose markedly increased its antineoplastic activity in mouse models of cancer. Our data also show that there is a good correlation between the concentrations of DAC that reduce <it>in vitro </it>clonogenicity, reactivate TSGs and inhibit DNA methylation. These results suggest that the antineoplastic action of DAC is related to its epigenetic action. Our observations provide a strong rationale to perform clinical trials using dose intensification of DAC to maximize the chemotherapeutic potential of this epigenetic agent in patients with cancer.</p

    Bub3 Is a Spindle Assembly Checkpoint Protein Regulating Chromosome Segregation during Mouse Oocyte Meiosis

    Get PDF
    In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1–3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes

    Relation of tricuspid annular displacement and tissue Doppler imaging velocities with duration of weaning in mechanically ventilated patients with acute pulmonary edema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liberation from the ventilator is a difficult task, whereas early echocardiographic indices of weaning readiness are still lacking. The aim of this study was to test whether tricuspid annular plane systolic excursion (TAPSE) and right ventricular (RV) systolic (Sm) and diastolic (Em & Am) tissue Doppler imaging (TDI) velocities are related with duration of weaning in mechanically ventilated patients with acute respiratory failure due to acute pulmonary edema (APE).</p> <p>Methods</p> <p>Detailed quantification of left and right ventricular systolic and diastolic function was performed at admission to the Intensive Care Unit by Doppler echocardiography, in a cohort of 32 mechanically ventilated patients with APE. TAPSE and RV TDI velocities were compared between patients with and without prolonged weaning (≥ or < 7 days from the first weaning trial respectively), whereas their association with duration of ventilation and left ventricular (LV) echo-derived indices was tested with multivariate linear and logistic regression analysis.</p> <p>Results</p> <p>Patients with prolonged weaning (n = 12) had decreased TAPSE (14.59 ± 1.56 vs 19.13 ± 2.59 mm), Sm (8.68 ± 0.94 vs 11.62 ± 1.77 cm/sec) and Em/Am ratio (0.98 ± 0.80 vs 2.62 ± 0.67, p <0.001 for all comparisons) and increased Ε/e' (11.31 ± 1.02 vs 8.98 ± 1.70, p <0.001) compared with subjects without prolonged weaning (n = 20). Logistic regression analysis revealed that TAPSE (R<sup>2 </sup>= 0.53, beta slope = 0.76, p < 0.001), Sm (R<sup>2 </sup>= 0.52, beta = 0.75, p < 0.001) and Em/Am (R<sup>2 </sup>= 0.57, beta = 0.32, p < 0.001) can predict length of weaning ≥ 7 days. The above measures were also proven to correlate significantly with Ε/e' (r = -0.83 for TAPSE, r = -0.87 for Sm and r = -0.79 for Em/Am, p < 0.001 for all comparisons).</p> <p>Conclusions</p> <p>We suggest that in mechanically ventilated patients with APE, low TAPSE and RV TDI velocities upon admission are associated with delayed liberation from mechanical ventilation, probably due to more severe LV heart failure.</p

    Spindle Assembly Checkpoint Regulates Mitotic Cell Cycle Progression during Preimplantation Embryo Development

    Get PDF
    Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos

    MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology

    Get PDF
    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the in situ analysis of tissue sections. MALDI-IMS can determine the distribution of hundreds of unknown compounds in a single measurement and enables the acquisition of cellular expression profiles while maintaining the cellular and molecular integrity. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. In this review, we focus on the current state of the art of MALDI-IMS, describe basic technological developments for MALDI-IMS of animal and human tissues, and discuss some recent applications in basic research and in clinical settings

    Flow-to-fracture transition and pattern formation in a discontinuous shear thickening fluid

    Get PDF
    Recent theoretical and experimental work suggests a frictionless-frictional transition with increasing inter-particle pressure explains the extreme solid-like response of discontinuous shear thickening suspensions. However, analysis of macroscopic discontinuous shear thickening flow in geometries other than the standard rheometry tools remain scarce. Here we use a Hele-Shaw cell geometry to visualise gas-driven invasion patterns in discontinuous shear thickening cornstarch suspensions. We plot quantitative results from pattern analysis in a volume fraction-pressure phase diagram and explain them in context of rheological measurements. We observe three distinct pattern morphologies: viscous fingering, dendritic fracturing, and system-wide fracturing, which correspond to the same packing fraction ranges as weak shear thickening, discontinuous shear thickening, and shear-jammed regimes

    Ubiquitin Fold Modifier 1 (UFM1) and Its Target UFBP1 Protect Pancreatic Beta Cells from ER Stress-Induced Apoptosis

    Get PDF
    UFM1 is a member of the ubiquitin like protein family. While the enzymatic cascade of UFM1 conjugation has been elucidated in recent years, the biological function remains largely unknown. In this report we demonstrate that the recently identified C20orf116 [1], which we name UFM1-binding protein 1 containing a PCI domain (UFBP1), andCDK5RAP3 interact with UFM1. Components of the UFM1 conjugation pathway (UFM1, UFBP1, UFL1 and CDK5RAP3) are highly expressed in pancreatic islets of Langerhans and some other secretory tissues. Co-localization of UFM1 with UFBP1 in the endoplasmic reticulum (ER)depends on UFBP1. We demonstrate that ER stress, which is common in secretory cells, induces expression of Ufm1, Ufbp1 and Ufl1 in the beta-cell line INS-1E.siRNA-mediated Ufm1 or Ufbp1knockdown enhances apoptosis upon ER stress.Silencing the E3 enzyme UFL1, results in similar outcomes, suggesting that UFM1-UFBP1 conjugation is required to prevent ER stress-induced apoptosis. Together, our data suggest that UFM1-UFBP1participate in preventing ER stress-induced apoptosis in protein secretory cells

    Aging and Visual Counting

    Get PDF
    Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a "single glance", without the confounding influence of eye movements.We recruited 104 observers with normal vision across the age span (age 21-85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61-85: ∼5 dots) when compared with the youngest groups (age 21-40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more.Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin

    Magnetorheology in an aging, yield stress matrix fluid

    Get PDF
    Field-induced static and dynamic yield stresses are explored for magnetorheological (MR) suspensions in an aging, yield stress matrix fluid composed of an aqueous dispersion of Laponite® clay. Using a custom-built magnetorheometry fixture, the MR response is studied for magnetic field strengths up to 1 T and magnetic particle concentrations up to 30 v%. The yield stress of the matrix fluid, which serves to inhibit sedimentation of dispersed carbonyl iron magnetic microparticles, is found to have a negligible effect on the field-induced static yield stress for sufficient applied fields, and good agreement is observed between field-induced static and dynamic yield stresses for all but the lowest field strengths and particle concentrations. These results, which generally imply a dominance of inter-particle dipolar interactions over the matrix fluid yield stress, are analyzed by considering a dimensionless magnetic yield parameter that quantifies the balance of stresses on particles. By characterizing the applied magnetic field in terms of the average particle magnetization, a rheological master curve is generated for the field-induced static yield stress that indicates a concentration–magnetization superposition. The results presented herein will provide guidance to formulators of MR fluids and designers of MR devices who require a field-induced static yield stress and a dispersion that is essentially indefinitely stable to sedimentation.Petroleum Research Fund (ACS-PRF Grant No. 49956-ND9)American Chemical Society (ACS-PRF Grant No. 49956-ND9

    ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines

    Get PDF
    BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is associated with poor survival. To identify prognostic and diagnostic markers and therapeutic targets, we studied ANO1, a recently identified calcium-activated chloride channel (CaCC). METHODS: High-resolution genomic and transcriptomic microarray analysis and functional studies using HNSCC cell line and CaCC inhibitors. RESULTS: Amplification and overexpression of genes within the 11q13 amplicon are associated with the propensity for future distance metastasis of HPV-negative HNSCC. ANO1 was selected for functional studies based on high correlations, cell surface expression and CaCC activity. ANO1 overexpression in cells that express low endogenous levels stimulates cell movement, whereas downregulation in cells with high endogenous levels has the opposite effect. ANO1 overexpression also stimulates attachment, spreading, detachment and invasion, which could account for its effects on migration. CaCC inhibitors decrease movement, suggesting that channel activity is required for the effects of ANO1. In contrast, ANO1 overexpression does not affect cell proliferation. INTERPRETATION: ANO1 amplification and expression could be markers for distant metastasis in HNSCC. ANO1 overexpression affects cell properties linked to metastasis. Inhibitors of CaCCs could be used to inhibit the tumourigenic properties of ANO1, whereas activators developed to increase CaCC activity could have adverse effects
    • …
    corecore